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Binary and hexadecimal 
 

 

This excerpt from my book about waves explains how computers store and use 

numbers. 

 

 

Binary 
 

Computers count in binary, and therefore, their methods of storing numbers are 

based around binary. Binary is a counting system where every digit is either zero 

or one. Normally, we count in decimal, where every digit is 0, 1, 2, 3, 4, 5, 6, 7, 8 or 

9. As we know, the progression of counting in decimal is as so: 

 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and so on. 

 

The basic rule for counting in decimal is that when the rightmost digit is going to 

pass 9, we reset the digit to 0, and add 1 to the digit to the left. If that digit is going 

to pass 9, then we set that to 0, and add 1 to the digit to the left, and so on. 

 

Counting in binary works in a similar way, but as binary has only two different 

digits (zero and one), counting progresses as so: 

 

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100 and so on. 

 

When the rightmost digit of a number is going to be above 1, that digit becomes 0, 

and the digit to the left is raised by 1. If that digit is going to be above 1, then it 

becomes 1, and the digit to the left is raised by 1, and so on. Counting in binary is 

based on identical ideas as counting in decimal. 
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When we have a number in decimal, we can think of each digit as being in a 

“column” representing, from right to left, ones, tens, hundreds, thousands, ten 

thousands and so on. Each column is ten times the one before it. For example, the 

number “245” has 2 in the hundreds column, 4 in the tens column, and 5 in the 

ones column. The number “245” is really: 2 * 100, added to 4 * 10, added to 5 * 1. 

 

We can think in the same way about binary. From right to left in binary, the 

columns are ones, twos, fours, eights, sixteens, thirty-twos, sixty-fours, one 

hundred and twenty eights, and so on. Each column is twice the one before it. As an 

example, the binary number “1100” has 1 in the eights column, 1 in the fours 

column, 0 in the twos column, and 0 in the ones column. The binary number 

“1100” is really: 

1 * 8 

... added to: 

1 * 4 

... added to: 

0 * 2 

... added to: 

0 * 1 

... which makes 12 in decimal. 

 

The decimal numbers 0 to 15 and their binary equivalents are as so: 

 

Decimal Binary 

 

0  0 

1  1 

2  10 

3  11 

4  100 

5  101 

6  110 

7  111 

8  1000 

9  1001 

10  1010 

11  1011 

12  1100 

13  1101 

14  1110 

15  1111 
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A binary digit is called a “bit”. Therefore, we can say that the number “111001” 

contains 6 bits. This is the same as saying that the number “111001” has 6 digits. 

 

Electronics can use the binary counting system because the system works well 

with switches, whether they are real mechanical ones or ones controlled by 

circuitry. We can portray a binary number by having a series of switches set to on 

or off. For example, we could portray the number “1010” by having four switches, 

with the first and third switched on, and the second and fourth switched off. In 

digital electronics, we can portray binary numbers in a similar way by having 

parallel lines with different voltages. We can have a voltage being set to, say, 5 

volts to represent a one, and a voltage set to 0 volts to represent a zero. By using 

just two different states, we avoid any confusion because a state represents either 

a one or a zero. There is nothing between the states. 

 

 

 

Groups of bits 
 

Although digital electronics can use binary numbers of any chosen length, when it 

comes to computers, binary numbers are grouped into particularly sized sets of 

digits. Computer processors are designed to operate most quickly when dealing 

with a particular sized group of bits. The size of the group depends on the 

processor. [Away from computers, you can use any grouping that you want.] 

 

[The following size names are those used by Intel when referring to 80x86 and 

64-bit computer processors. These are common modern definitions of the terms, 

but some other, especially older, computer architectures define things differently. 

If you ask someone how big a “word” is, an Intel assembly language programmer 

will say 16 bits. Someone else might say, “It depends...”] 

 

 

Bytes 

 

A “byte” is a group of 8 bits. In other words, a byte is a binary number that is 8 

digits long. To put this another way, a number that is stored as a byte will always 

be 8 bits long, even if the higher bits, or even all the bits, are zero. When a 

computer reads one byte, it will always read 8 bits. It will never read fewer or 

more. Given that, if we are writing out a binary number as a byte, it makes sense to 

include any preceding zeroes. If a decimal number is converted to a byte, the result 

will end up as an 8-bit number. 
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As a byte is always 8 bits long, the binary numbers that can be contained within a 

byte are as follows: 

 

Binary  Decimal 

number  Equivalent 

 

00000000 0 

00000001 1 

00000010 2 

00000011 3 

00000100 4 

00000101 5 

00000110 6 

00000111 7 

00001000 8 

00001001 9 

00001010 10 

00001011 11 

00001100 12 

00001101 13 

00001110 14 

00001111 15 

00010000 16 

00010001 17 

... and so on until: 

11111100 252 

11111101 253 

11111110 254 

11111111 255 

 

The highest number that can be stored as a byte is 11111111 in binary, which is 

255 in decimal. As we start at 00000000 in binary, this means that we can actually 

store 256 different values as a byte. [If we were using a byte to indicate the 

position of something in a list, it makes sense to treat the first item in the list as 

item 0, instead of item 1, as that means we can distinguish between 256 different 

items instead of 255.] 

 

Supposing we were dealing with binary numbers on a piece of paper, if we were to 

add 1 to the binary number 11111111, we would end up with the number 

100000000, which is 9 digits long. However, if we are dealing with binary numbers 

on a computer, and dealing with bytes, if we added 1 to 11111111, we would end 
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up with 00000000, which is zero. This is because we cannot have more than 8 

digits in a byte. The 1 that would be the ninth digit becomes lost, and the whole 

number rolls over to zero. This is the same effect as when a milometer [odometer] 

in a vehicle, or a meter on a fuel pump, reaches its maximum value and rolls over 

to zero. 

 

By only using numbers with a set number of digits, computers can work more 

efficiently. A byte is generally the smallest grouping of bits with which a computer 

processor can work quickly. It is usually possible for a processor to read individual 

bits or half bytes, but to do so, it would first have to load the number into a byte or 

larger number grouping, and the process is slower than dealing with bytes. 

 

 

Half bytes 

 

A “half byte” is a 4-bit number – it is a grouping of 4 bits. A half byte is always 4 bits 

long. It is half the length of a byte. A half byte is sometimes called a “nibble”.  The 

binary numbers that can fit into a half byte are as follows: 

 

Binary  Decimal 

number  Equivalent 

 

0000  0 

0001  1 

0010  2 

0011  3 

0100  4 

0101  5 

0110  6 

0111  7 

1000  8 

1001  9 

1010  10 

1011  11 

1100  12 

1101  13 

1110  14 

1111  15 
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A half byte can contain the binary digits 0000 to 1111. The maximum number it 

can hold is the binary equivalent of the decimal number 15. As it can hold the 

number 0, it is capable of holding 16 different values. 

 

On Intel 32-bit and 64-bit processors, it is possible to access a half byte easily, but 

the number must first be placed into a byte or a larger number type. It is slower to 

use half bytes than it is to use bytes. 

 

 

Words 

 

A “word” is a grouping of 16 bits as one entity. A word is twice as long as a byte. 

The binary numbers that can be contained in a word are as follows: 

 

Binary   Decimal 

number   Equivalent 

 

0000000000000000 0 

0000000000000001 1 

0000000000000010 2 

0000000000000011 3 

0000000000000100 4 

0000000000000101 5 

0000000000000110 6 

0000000000000111 7 

0000000000001000 8 

0000000000001001 9 

0000000000001010 10 

0000000000001011 11 

... and so on until: 

1111111111111100 65,532 

1111111111111101 65,533 

1111111111111110 65,534 

1111111111111111 65,535 

 

A word can hold values from 0 up to 65,535. This means that it can hold 65,536 

different values. 

 

[Note that a few people use the term “word” to describe any grouping of bits. You 

might see this in older books. Intel have been using the term “word” to mean a 

grouping of 16 bits for at least thirty years.] 
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The rule for finding out how many different values can be stored in a binary 

number, based on the bit size, is to raise 2 to the power of the bit size. For example, 

a 16-bit binary number can hold: 216 = 65,536 different values. Note, however, that 

this is not the maximum value because we start at zero. The maximum value is 

always 1 less than the number of available values. For example, an 8-bit binary 

number can hold 28 = 256 values, but the maximum value will be 28 – 1 = 255. 

 

Computer processors can be categorised according to the maximum number of bits 

they can deal with in one go. For example, if we had a processor that could only 

operate with bytes (8-bit numbers), it would be referred to as an “8-bit processor”. 

The longest number an 8-bit processor can read in one go is 8 bits long. Generally, 

an 8-bit processor will be fastest at dealing with 8-bit numbers. It will be able to 

read 8 bits in one go, store 8 bits in one go, and perform calculations on 8 bits in 

one go. If a processor is a 16-bit processor, the largest and optimal size of number 

it can deal with is 16 bits long. The processor will be best at operating with 16-bit 

numbers. It will be able to read and work with numbers most efficiently if they are 

16 bits long. Note that a 16-bit processor will still be able to work with shorter 

numbers, but it will take slightly longer to do so. It will also be able to work with 

longer numbers, but it will require being told how to do so via a computer 

program, and it will take much longer. [This is analogous to using a calculator that 

can only count up to one hundred to perform maths with numbers over one 

hundred. We would have to split calculations into parts, and write down partial 

calculations on a piece of paper. We could do it, but it would be more effort.] 

 

A common mistake that programmers used to make was to use of one of the binary 

number types, either to count with or as an indicator to a place in a list, and to 

forget about the limits of the number type they were using. For example, if we are 

using a 16-bit word to count the number of letters in a piece of text, and we count 

more than 65,535 letters, the number will roll around to zero, and carry on from 

there. This means that the total will be wrong. Similarly, if we had a list of names 

and we used a 16-bit word to identify the different entries, with the first entry 

being entry 0, we would only be able to have 65,536 different entries. If we tried to 

access the 65,537th entry, we would end up accessing the very first entry [entry 0] 

instead because we cannot count that high with 16-bit numbers. As modern 

computers more commonly use 64-bit processors, where the highest number is 

considerably larger, this is now a rarer problem. However, it still happens if the 

programmer, for some reason, chooses a smaller number type. 
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Doublewords 

 

A “doubleword” or “dword” is 32 bits long. A dword can hold the binary numbers 

from: 

00000000000000000000000000000000 

... to: 

11111111111111111111111111111111 

... in binary. 

 

The number of different values that can be expressed by a dword is: 

232 = 4,294,967,296 

 

The highest number that can be expressed by a dword is 232 – 1 = 4,294,967,295 

 

The binary numbers that can be held in a dword are as follows: 

 

Binary      Decimal 

number      Equivalent 

 

00000000000000000000000000000000 0 

00000000000000000000000000000001 1 

00000000000000000000000000000010 2 

00000000000000000000000000000011 3 

... and so on until: 

11111111111111111111111111111100 4,294,967,292 

11111111111111111111111111111101 4,294,967,293 

11111111111111111111111111111110 4,294,967,294 

11111111111111111111111111111111 4,294,967,295 

 

An Intel 32-bit 80x86 processor works most efficiently with 32-bit numbers. It is 

fastest when reading, working on, and storing 32-bit numbers. Although the 

processor has commands to deal with words (16-bit numbers), bytes (8-bit 

numbers) and half bytes (4-bit numbers), and it can test if individual bits are one 

or zero, it is most efficient when handling 32-bit numbers. [Other 32-bit processors 

are likely to be similar.] If we wanted a 32-bit processor to work with a 64-bit 

number, we would have to do it in a slower, more contrived way by splitting the 

number into two 32-bit numbers and then using slightly more awkward maths. 
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Quadwords 

 

A “quadword” or “qword” is 64 bits long. A qword can hold the binary numbers 

from: 
0000000000000000000000000000000000000000000000000000000000000000 

... to: 
1111111111111111111111111111111111111111111111111111111111111111 

... in binary. 

 

The number of values that can be expressed by a qword is: 

264 = 18,446,744,073,709,551,616 

 

The highest number that can be expressed by a qword is: 

264 – 1 = 18,446,744,073,709,551,615 

This is roughly 18.4 million million million, which is 18.4 * 1018. 

 

A 64-bit processor works most efficiently with 64-bit binary numbers. Intel 64-bit 

processors have commands that work with 64-bit qwords, 32-bit dwords, 16-bit 

words, and 8-bit bytes, and can test whether individual bits are 1 or 0, but they 

work best with 64-bit qwords. [Intel 64-bit processors can work with 4-bit half 

bytes but those half bytes must already be within a byte, word, dword or qword.] 

 

Although a 64-bit processor might seem best because it works with large numbers, 

a consequence is that the storage of numbers requires more space. If we wanted to 

store the number “3” as a 64-bit qword, it would require 64 bits. If we wanted to 

store it as a 32-bit dword, it would require 32 bits. If we wanted to store it as a 16-

bit word, it would require 16 bits. If we wanted to store it as an 8-bit byte, it would 

require just 8 bits. Storing smaller numbers as 64-bit values uses 8 times as much 

space as using 8-bit bytes. On the other hand, we cannot store a number larger 

than 255 in a byte. 

 

If we wanted to store the number “3” with the minimum size possible, it would 

require only 2 bits because the decimal number “3” is “11” in binary. However, it is 

rare that a computer processor would have a grouping that was only two bits long. 

We could write the 2-bit number on a piece of paper, though, as then we would be 

unconstrained by the groupings of bits. 
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Double quadwords 

 

It is also possible to have a 128-bit number, which is called a “double quadword” or 

“dqword”. Such numbers work in the same way as other numbers, but just contain 

more bits. To keep things simple, we will focus on bytes, words, dwords and 

qwords. 

 

 

Programming 

 

In higher-level programming languages such as C, C++, Java, Python and so on, the 

actual bit group sizes are usually hidden from the programmer. An advantage of 

this is that the programmer can use the same code on different types of processors. 

A disadvantage is that useful underlying aspects of the processor are hidden from 

the programmer, so software might not run as efficiently as it could. It is possible 

to be reasonably good at programming, but without knowing anything about bytes, 

words, dwords, qwords, or even binary. 

 

 

Converting binary to decimal 

 

It is rare that you will ever need to convert long binary numbers to decimal. You 

are much more likely to need to convert binary numbers to hexadecimal, which we 

will look at later in this chapter. It is a lot of effort to convert any remotely long 

binary number directly to decimal, and it is much easier to convert it to 

hexadecimal first, and then to decimal. Therefore, there is not much point in 

learning how to convert binary to decimal. Having said that, if you want to become 

proficient in using binary and hexadecimal, it is very helpful to know every 4-bit 

binary number’s decimal equivalent. Learning them is easy with practice, but 

whether you need to learn them depends on what you want to do. If you frequently 

use binary, you will end up learning the numbers anyway from seeing them so 

often. 
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The numbers are as follows: 

 

Binary 

  Decimal 

   How to remember  

 

0000 0 This is easy to remember. 

0001 1 This is easy to remember. 

0010 2 This is a 1 in the twos column. 

0011 3 This is two 1s to the right. 

0100 4 This is a 1 in the fours column. 

0101 5 This is 4 + 1 

0110 6 This is two 1s in the middle. 

0111 7 This is three 1s, all to the right. 

1000 8 This is a 1 in the eights column. 

1001 9 This is 1 more than 8. 

1010 10 This is 8 + 2 

1011 11 This is 8 + 3 

1100 12 This is 8 + 4, or two 1s to the left. 

1101 13 This is 12 + 1 

1110 14 This is three 1s, all to the left. 

1111 15 This is four 1s. 

 

If you can remember 0100 (four), 0110 (six), and 1100 (twelve), then it is easy to 

calculate the others in your head. When you are completely used to binary, it will 

become irrelevant to you whether a 4-bit binary number is written in binary or its 

decimal equivalent. You will see them as the same thing. 

 

We will see how to convert from binary to decimal and back in the “Binary and 

hexadecimal” section later in this chapter. 
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Hexadecimal 
 

Decimal is a counting system based around the number ten. Binary is a counting 

system based around the number two. Now we will look at hexadecimal, which is a 

number system that is based around the number sixteen. Each digit of a 

hexadecimal number can have 16 different values. The first ten, representing the 

decimal numbers from 0 to 9, are also the numbers 0 to 9. The next digits are “a”, 

“b”, “c”, “d”, “e” and “f”. Therefore, the letter “a” represents the decimal number ten, 

but in the form of only one digit. The letter “b” is the digit that represents the 

decimal number eleven. The letter “c” is the digit that represents the decimal 

number twelve, and so on. 

 

The term “hexadecimal” is often abbreviated to the word “hex”. 

 

The hexadecimal numbers from the equivalent of the decimal number 0 up to the 

decimal number 15 are as so: 

 

Hexadecimal Equivalent 

number  decimal number 

 

0   0 

1   1 

2   2 

3   3 

4   4 

5   5 

6   6 

7   7 

8   8 

9   9 

a   10 

b   11 

c   12 

d   13 

e   14 

f   15 
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When we count in decimal, we have a ones column, a tens column, a hundreds 

column, a thousands column and so on. Each new column is ten times the previous 

one. When we count in binary, we have a ones column, a twos column, a fours 

column, an eights column and so on. Each new column is twice the previous one. 

When we count in hexadecimal, we have a ones column, a sixteens column, a 256s 

column, a 4096s column and so on. Each new column is 16 times the previous one. 

When the ones column in hexadecimal gets past “f”, we set the ones column to 

zero, and add 1 to the sixteens column. If that makes the sixteens column go past 

“f”, then that is set to zero, and 1 is added to the 256s column and so on. 

 

Hexadecimal is easier to use than to explain. Here is a long list of hexadecimal 

numbers and their decimal equivalents so we can see how hexadecimal works. [It 

is worth reading this, but it is not worth trying to remember which hexadecimal 

value is equal to which decimal value]: 

 

Hexadecimal Equivalent 

number  decimal number 

 

0   0 

1   1 

2   2 

3   3 

4   4 

5   5 

6   6 

7   7 

8   8 

9   9 

a   10 

b   11 

c   12 

d   13 

e   14 

f   15 

10   16 [This is 1 times 16] 

11   17 [This is 1 times 16, with 1 added on] 

12   18 

13   19 

14   20 

15   21 

16   22 
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Hexadecimal Equivalent 

number  decimal number 

 

17   23 

18   24 

19   25 

1a   26 

1b   27 

1c   28 

1d   29 

1e   30 

1f   31 

20   32 [This is 2 times 16] 

21   33 

22   34 

23   35 

24   36 

25   37 

26   38 

27   39 

28   40 

29   41 

2a   42 

2b   43 

2c   44 

2d   45 

2e   46 

2f   47 

30   48 [This is 3 times 16] 

31   49 

... and so on, until: 

99   153 

9a   154 

9b   155 

9c   156 

9d   157 

9e   158 

9f   159 

a0   160 [This is ten times 16] 
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Hexadecimal Equivalent 

number  decimal number 

 

a1   161 

a2   162 

... and so on, until: 

f9   249 

fa   250 

fb   251 

fc   252 

fd   253 

fe   254 

ff   255 

100  256 [This is 16 times 16] 

101  257 

102  258 

 

 

Notation 

 

Using decimal, binary and hexadecimal numbers together can be confusing if we do 

not identify in which number system a sequence of digits belongs. For example, 

without any context, the sequence of digits “111” could mean the decimal number 

“one hundred and eleven”, the binary number equivalent to the decimal number 

“seven”, or the hexadecimal number equivalent to the decimal number “273”. 

 

There are three main ways to avoid such confusion. The first way is the most 

common, and is used in higher-level programming languages such as C. For this 

way, a hexadecimal number is prefixed with “0x”, a binary number is prefixed with 

“0b”, and a decimal number is left alone. Therefore, the hexadecimal number 111 

would be written as so: 

0x111 

 

The binary number 111 would be written as so: 

0b111 

 

The decimal number 111 would be written as: 

111 
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The second way is used in assembly language programming, specifically in 

programming for Intel and AMD processors, but probably for other processors too. 

This involves putting the letter “h” after a hexadecimal number, and if that number 

starts with a letter, putting a zero in front. [The zero stops it being confused with 

the name of a variable.] If we have a binary number, we put the letter “b” at the 

end. If we have a decimal number, we put the letter “d” at the end. Therefore, the 

hexadecimal number 111 is written as: 

111h 

 

The hexadecimal number “ff” becomes: 

0ffh 

... because the number starts with a letter, so we prefix it with a zero. 

 

The binary number 111 becomes: 

111b 

[This cannot be confused with the hex number “111b” because, if we were using 

this system, all hex bytes would have an “h” after them. The hexadecimal number 

“111b” would be written as “111bh”.] 

 

The decimal number 111 becomes: 

111d 

[Again, this cannot be confused with the hex number “111d” because the hex 

number would be “111dh”.] 

 

The third way of distinguishing between the types of numbers is to put a subscript 

on each number to indicate the base. For example, 10112 for binary, f516 for hex, 

2310 for decimal. The downsides to this method are: 

 It is an effort to type subscripted text on computers. 

 Sometimes the subscript can be misread as part of the number. 

 Copying and pasting subscripted text sometimes loses the attribute of being 

subscripted, thus turning, say, 10112 into 10112. 

 

Most people use the “0x” and “0b” method. In this book, I will use the 0x method 

for hex numbers, and rely on the context for binary and decimal numbers. 
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The first few hexadecimal numbers written with the “0x” prefix are as so: 

 

0x1 

0x2 

0x3 

0x4 

0x5 

0x6 

0x7 

0x8 

0x9 

0xa 

0xb 

0xc 

0xd 

0xe 

0xf 

0x10 

0x11 

... and so on. 

 

Sometimes, if the context is clear, it is tidier and easier to have the values without 

the prefix. For example, if we know that a list of values is in hexadecimal, then 

there is no need to distinguish each value with a prefix. 
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Binary and hexadecimal 
 

There is a connection between binary and hexadecimal that makes hexadecimal 

useful. A group of 4 binary bits can be represented by exactly one hexadecimal 

digit. Therefore, instead of dealing with very long sequences of binary digits, we 

can group them into fours, and deal with shorter sequences of hexadecimal digits. 

 

The way that hexadecimal can be used to represent binary numbers more 

succinctly is clearer in the following table. 

 

Decimal  Binary Hexadecimal 

 

0   0000  0x0 

1   0001  0x1 

2   0010  0x2 

3   0011  0x3 

4   0100  0x4 

5   0101  0x5 

6   0110  0x6 

7   0111  0x7 

8   1000  0x8 

9   1001  0x9 

10   1010  0xa 

11   1011  0xb 

12   1100  0xc 

13   1101  0xd 

14   1110  0xe 

15   1111  0xf 

 

When we convert from binary to hexadecimal, we turn 4 binary digits into just 1 

hexadecimal digit. 

 

The usefulness of hexadecimal is more obvious if we have a long sequence of 

binary digits such as this: 

10110010000011010011111110100110 

 

To convert this into hexadecimal, we first split it into 4-bit sections: 

1011  0010  0000  1101  0011  1111  1010  0110 

 

Then, we convert each 4-bit section into the relevant hexadecimal digit: 

     b          2         0         d          3         f           a          6 
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Then, we join up the hexadecimal digits to create the final value: 

0xb20d3fa6 

 

We have turned a binary number with 32 digits into a hexadecimal number with 8 

digits. To put this another way, we have turned a 32-bit binary number into a 32-

bit hexadecimal number. By calling the hex number “32-bit”, despite it containing 8 

digits, we are still acknowledging that it represents 32 binary bits. We are really 

just using hexadecimal to make long binary numbers more palatable. Hexadecimal 

is easier to read and remember than binary, but its ultimate meaning is the same. 

 

 

Converting between hex and decimal 

 

Depending on what it is we are trying to do, generally, there is less need to convert 

from hexadecimal to decimal and back, than there is to convert from hexadecimal 

to binary and back. In most situations, it is easier to remain in the world of 

hexadecimal than it is to swap to decimal and back. It is easy to know if one 

hexadecimal number is higher than another, which is what is usually needed. If you 

need to convert a long hexadecimal number to decimal, it is easiest to use a 

calculator to do it, than to bother trying to do it in your head. However, even if you 

always intend to use calculators, it is good to know the hexadecimal values 0x0 to 

0xf by heart. 

 

Converting between decimal and hexadecimal is not in any way difficult, but it 

takes more time than using a hex calculator. Before we do the conversion, we first 

have to be aware of the digit columns for a hexadecimal number, which from right 

to left are: 

 

 1s 

 16s 

 256s 

 4096s 

 65,536s 

 

... and so on. Each column is 16 times the one before it. 
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If we had the number 0xfedc, it would have 0xf in the 4096s column, 0xe in the 

256s column, 0xd in the 16s column, and 0xc in the 1s column. 

 

 
 

The simplest way to convert from hexadecimal to decimal is to read each digit from 

each column, convert it to decimal, multiply it by the column it is in (1s, 16s, 256s, 

4096s and so on), and then add up all the multiplications. For the number 0xfedc, 

we would proceed as follows: 

 

The digit “f” is in the 4096s column. 0xf in hex is 15 in decimal. Therefore, we 

multiply 15 by 4096 to get 61,440. 

 

The digit “e” is in the 256s column. 0xe in hex is 14 in decimal. Therefore, we 

multiply 14 by 256 to get 3,584. 

 

The digit “d” is in the 16s column. 0xd in hex is 13 in decimal. Therefore, we 

multiply 13 by 16 to get 208. 

 

The digit “c” is in the 1s column. 0xc in hex is 12 in decimal. Therefore, we multiply 

12 by 1 to get 12. 

 

We then add up the results of the four multiplications: 

61,440 + 3,584 + 208 + 12 = 65,244 

 

We now know that 0xfedc is equal to 65,244 in decimal. 

 

Converting from decimal to hexadecimal is easiest using a different type of method. 

The process is as follows: 

 

 We divide the number by 16. We take the remainder, convert it into a hex 

digit, and put it into the 1s column. 

 We then divide the integer part of the previous result by 16. We take the 

remainder, convert it into a hex digit, and put it into the 16s column. 

 We then divide the integer part of the previous result by 16. We take the 

remainder, convert it into a hex digit, and put it into the 256s column. 

 We continue in this way until we reach a time when the integer part of the 

previous division was zero. 
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As an example, we will convert the decimal number 1234 to hexadecimal. We start 

with our empty hexadecimal number columns: 

 

 
 

We divide 1234 by 16, and we get 77.125. This is 77 with a remainder of 2. [To 

calculate the remainder, we multiply the part after the decimal point by 16]. We 

convert the remainder to hex – it is 0x2 – and put it into the 1s column: 

 

 
 

Then, we divide the integer part of the result from the last division (77 in decimal) 

by 16. This gives us 4.8125, which is 4 with a remainder of 13. We convert the 

remainder to a hex digit – it is 0xd – and put it in the 16s column: 

 

 
 

Then we divide the integer part of the result from the last division (4) by 16. This 

gives us 0.25, which is 0 with a remainder of 4. We convert the 4 to a hex digit – it 

stays as 4 – and put it in the 256s column: 

 

 
 

As the integer part of the result of the previous division was zero, we have finished. 

Our converted number is 0x4d2. 
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Converting between binary and decimal 

 

Converting between binary and decimal uses a similar method as that for 

converting between hex and decimal. To convert from binary to decimal, we 

imagine the number columns for binary, which are, from right to left, ones, twos, 

fours, eights, sixteens, 32s, 64s, 128s and so on. 

 

We go through the binary number, and add up all the number column values for 

whenever the bit is 1. [For example, if the number column is eights and the bit in 

that column is 1, then we add eight to our total.] The final total will be the binary 

number in decimal. 

 

As an example, we will convert the binary number 1011 to decimal. [This is 

actually a number that, with practice, you will be able to do in your head instantly.] 

The number shown with the binary number columns is as so: 

 

 
 

We will arbitrarily start at the leftmost bit, but it does not matter where we start. 

The leftmost bit is 1, which is in the eights column. Therefore, our running total 

will start with 8 in it. The next 1 is in the twos column. Therefore, we add 2 to our 

running total. The next 1 is in the ones column. Therefore, we add 1 to our running 

total. Our full sum is 8 + 2 + 1 = 11 in decimal. 

 

To convert from decimal to binary, we use a similar method to the one for 

converting from decimal to hex. If we have a decimal number to convert, we 

proceed as follows: 

 

 We divide the number by 2. We take the remainder, which will be 0 or 1, 

and put it into the ones column. 

 We then divide the integer part of the previous result by 2. We take the 

remainder, which again, will be 0 or 1, and put it into the twos column. 

 We then divide the integer part of the last result by 2. We take the 

remainder, which again, will be either be 0 or 1, and put it into the fours 

column. 

 We continue in this way until we reach a time when the integer part of the 

previous division was zero. 
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As an example, we will convert the decimal number 26 to binary. We will start with 

the blank number columns, which for this example, we will extend up to the 32s 

column. [We will only know how many columns we will need after we have 

performed the conversion.] 

 

 
 

We divide our number by 2, and we end up with 13 and no remainder. Another 

way of saying this is that the remainder is 0. We put the remainder in the ones 

column: 

 

 
 

We then divide 13 by 2, and end up with 6.5, which is the same as 6 and a 

remainder of 1. We put the 1 in the twos column: 

 

 
 

We then divide 6 by 2 and get 3 with a remainder of 0. We put the 0 in the fours 

column. 
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We then divide 3 by 2 and get 1.5, which is 1 with a remainder of 1. We put the one 

in the eights column. 

 

 
 

We then divide 1 by 2, and we get 0 with a remainder of 1. We put the 1 in the 

sixteens column: 

 

 
 

As our integer result was zero, we can stop here. Our final binary number 

(remembering to read from the sixteens column to the right) is 11010. In this 

example, we did not need to use the 32s column (or the 64s column, the 128s 

column and so on). If we wished, we could prefix our resulting binary number with 

zeroes to make it into a byte (00011010), word (0000000000011010), dword or 

qword. Alternatively, we can choose to leave it as it is. 

 

When converting long binary numbers to decimal, it is easiest to convert the 

number to hex first, then and convert that to decimal. Conversely, if it looks like a 

conversion from decimal to binary will produce a long binary number, it is easier 

to convert from decimal to hex, and then from hex to binary. 

 

 

Converting between hex and binary 

 

Converting from hexadecimal to binary and back is easy because we know that 4 

binary digits will end up as 1 hex digit, and that 1 hex digit will end up as 4 binary 

digits. A sequence of binary digits can be split up into fours (starting from the 

right-hand side), and each group of four can be converted into a hex digit. [If a 

binary number has too few digits to be split into groups of 4, we can prefix it with 

one or more zeroes to make it the correct length.] Similarly, a sequence of hex 

digits can be converted digit by digit into four binary bits. 
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Given all of that, if you want to become proficient at converting between 

hexadecimal and binary, it pays to learn the following table. The table is easiest to 

learn with practice – if you frequently need to convert between binary and 

hexadecimal, you will remember it quickly. If you seldom need to convert, it will be 

harder to learn, but, on the other hand, there will be less reason to learn it. 

 

Binary Hexadecimal 

  equivalent 

 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 a 

1011 b 

1100 c 

1101 d 

1110 e 

1111 f 

 

If we have the binary number 1011110000000001, we first separate it into 4-bit 

sections to make it easier to read: 

1011  1100  0000  0001 

... then, we convert each 4-bit section to the single hex digit it represents: 

b c 0 1 

... which means that our hex number is: 

0xbc01 

 

If we have the hex number 0xfc23, we convert each digit to the 4-bit binary 

number it represents: 

1111  1100  0010  0011 

... and then we remove the spaces (which should only really exist to make the 

number easier to read): 

1111110000100011 
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Groups of bits 

 

As we saw earlier in this chapter, when dealing in binary, there are predefined 

groups of bits. These are half bytes, bytes, words, dwords and qwords. These 

groups also apply to hexadecimal, but hexadecimal groups are easier to read. 

 

A half byte, being 4 bits, is represented by just one hexadecimal digit. For example, 

the binary number 1101 is 0xb in hexadecimal. 

 

A byte, being 8 bits, is represented by two hexadecimal digits. Despite this, it will 

still be referred to as an 8-bit number. As it will always be two hexadecimal digits, 

if the number is less than 16 (in decimal), it will have a preceding zero in front. 

Examples of hexadecimal bytes are: 

 
0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x0a 

0x0b 

0x0c 

0x0d 

0x0e 

0x0f 

0x10 

0x11 

0x21 

0xa0 

0xb7 

0xdd 

0xfe 

0xff 

 

If we have the hexadecimal byte 0xff, and add 1 to it, we will end up with the byte 

0x00. This is because 0xff is the highest possible number in a byte. It is 255 in 

decimal or 11111111 in binary. Adding 1 to 0xff makes it roll over to zero. If we 

added 2 to the byte 0xff, we would end up with the byte 0x01. If we added 3 to the 

byte 0xff, we would end up with the byte 0x02. [Remember that the rolling over at 

0xff only occurs when we are using bytes to store a number. For other number 

groupings, or away from computers, adding 1 to 0xff would result in 0x100.] 
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As we know, a word is 16 bits long. This means that it has 16 binary digits if we are 

portraying it in binary. A word, written as hexadecimal, has 4 hexadecimal digits. 

Despite this, it will still be referred to as a 16-bit number. Some examples of words 

in hexadecimal are as follows: 

 
0x0000 

0x0001 

0x0002 

0x000f 

0x0010 

0x0011 

0x0012 

0x056a 

0x1679 

0x2acd 

0x9abb 

0xde01 

0xdfff 

0xe000 

0xfffe 

0xffff 

 

If we are working with words, and we added 1 to 0xffff, we would end up with 

0x0000. The number 0xffff is the highest number that we can represent with a 

word (16 bits). 

 

If we had a word in binary as 1111000001100110, we could write it in 

hexadecimal as 0xf066. 

 

A doubleword, or dword, is 32 bits long. When we write a dword as binary, we 

have 32 binary digits in the number. When we write it in hexadecimal, we have 8 

hexadecimal digits. Despite this, it would still be referred to as a 32-bit number. 

Examples of hex dwords are as follows: 

 
0x00000000 

0x00000001 

0x0000000f 

0x00000010 

0x0000ffff 

0x12345678 

0xe0000000 

0xefffffff 

0xf0000000 

0xfffffffd 
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A quadword, or qword, is 64 bits long. In binary, such a number would require 64 

digits. In hexadecimal, the same number would require 16 hexadecimal digits. 

Despite this, it would still be referred to as a 64-bit number. 

 

Whereas a dword in hexadecimal is reasonably easy to read and remember, a 

qword is an awkward size. Therefore, for the purposes of this explanation, I will 

put a space in the middle of the number. You can think of this as similar to putting 

a comma in a long decimal number such as 1,000,000. If we were writing a qword 

in a computer program, we would not be able to put a space in the middle. 

 

Some examples of qwords in hexadecimal, with a space in the middle for clarity, 

are as follows: 

 
0x00000000 00000000 

0x00000000 00000001 

0x00000000 00000002 

0x00000000 00000003 

0x00000000 00000004 

0x00000000 00000005 

0x00000000 0000000f 

0x00000000 00000010 

0x00000000 0000ffff 

0x12345678 9abcdef0 

0x2fffffff ffffffff 

0x30000000 00000000 

0xcccccccc cccccccc 

0xf0000000 00000000 

0xffffffff fffffffd 

0xffffffff fffffffe 

0xffffffff ffffffff 

 

The last number in the list is the highest number that we can represent with a 

qword. 
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More on hexadecimal 
 

Hexadecimal should really be thought of as another way of writing binary. It pays 

to think of binary and hexadecimal as being interchangeable, or if they were really 

the same thing in different forms. A number, whether written as binary or 

hexadecimal, is still the same number. Although computers ultimately work in 

binary, it is easier to think of them as working in hexadecimal. Hexadecimal is a 

way of making endless sequences of binary digits have a recognisable meaning. For 

example, it is easier to think of this 32-bit binary number: 

11110001011101110110000100100011 

... as being: 

0xf1776123 

... than it is to think of it as binary. It is much easier to read and remember 

hexadecimal numbers, and it is much easier to recognise patterns in hexadecimal 

numbers. Hexadecimal’s close connection with binary is the reason that it is 

usually easier not to convert hexadecimal to binary, but stay in the world of 

hexadecimal. If we know a hexadecimal number, we know the exact position of 

every bit in its binary equivalent. 

 

Hexadecimal also has a slight advantage over decimal in that it is better for larger 

numbers. The most extreme example is how the maximum qword value 

(0xffffffffffffffff) takes 16 hexadecimal digits, but its decimal equivalent is 20 digits 

long. 

 

 

 

Hex editors 
 

On a computer, every file, whether a text file, an executable, a picture, an MP3, a 

Microsoft Word document, or anything, is really a sequence of binary digits. When 

an MP3 file, for example, is opened by an MP3 player program, the sequence of bits 

in the file is interpreted as music. If a text file is opened by a text editor, the 

sequence of bits in the file is interpreted as text. When an executable is run, the 

operating system interprets the sequence of bits as instructions to be executed. If 

you open an executable file in a text editor, you will see seemingly random 

characters. If you try to play a text file in an MP3 player, the player will complain 

that it does not understand the file. To keep things straightforward, programs 

generally hide the underlying binary content of files from users. 
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It is possible to see the hexadecimal equivalent of the binary bits that make up a 

file by opening the file in a hex editor. A hex editor is a program that opens any file, 

without interpreting its contents in any way. When you open a file in a hex editor, 

you will see the contents of a file as a sequence of hexadecimal bytes. [It would be 

possible to have a program that showed the binary bits that made up a file, but it 

would be much harder to make sense of the data in that way. It is better to view 

the binary in the form of hexadecimal.] Using a hex editor is the best way to 

become accustomed to how computers store data. It is worth downloading a free 

hex editor, so you can improve your understanding of hexadecimal and files in 

general. 

 

As an example of what we might see in a hex editor, here are the first 64 bytes 

from a text file containing this very sentence: 

 
41 73 20 61 6e 20 65 78 61 6d 70 6c 65 20 6f 66 

20 77 68 61 74 20 77 65 20 6d 69 67 68 74 20 73 

65 65 20 69 6e 20 61 20 68 65 78 20 65 64 69 74 

6f 72 2c 20 68 65 72 65 20 61 72 65 20 74 68 65 

 

Because we know that these bytes are hexadecimal, there is no need to prefix them 

all with “0x”, and doing so would make them harder to read. 

 

Due to the size of a typical file and the width of a typical computer screen, only so 

many bytes will fit neatly on a line. The start and end points of a line of bytes is 

solely due to how a particular hex editor has decided to fit the bytes on a line, and 

is not related to the nature of the bytes. 

 

The grouping into bytes is just to make the digits easier to read. The digits could 

just as easily be written as one continuous block as so: 

 
417320616e206578616d706c65206f662077686174207765206d696768742073656520

696e20612068657820656469746f722c20686572652061726520746865 

 

Although computers work with binary, a hex editor shows the data as hexadecimal 

to make it easier to read and interpret. If it were to show the data in binary, we 

might expect to see it as so: 

 
00100001 01110011 00100000 01100001 01101110 00100000 01100101 

01111000 

... and so on. 
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Or, if there were no arbitrary spaces between the bits, we would see it as so: 

 
0010000101110011001000000110000101101110001000000110010101111000 

... and so on. 

 

It is much easier to read the data as hexadecimal. 

 

Hex editors usually show where in the file each line of hex bytes starts by prefixing 

each line with the “offset” of the line. The “offset” is the position of a particular byte 

with respect to the start of the file. Our 64 bytes of text would look like this with 

the starts of each line written to the left of the data: 

 
0000: 41 73 20 61 6e 20 65 78 61 6d 70 6c 65 20 6f 66 

0010: 20 77 68 61 74 20 77 65 20 6d 69 67 68 74 20 73 

0020: 65 65 20 69 6e 20 61 20 68 65 78 20 65 64 69 74 

0030: 6f 72 2c 20 68 65 72 65 20 61 72 65 20 74 68 65 

 

The offsets themselves are given in hexadecimal. The file starts at byte number 

0x0000. To put this another way, the first byte is at offset 0x0000 in the file. The 

first line is sixteen (in decimal) bytes long, which is 0x10 (in hex) bytes long. This 

means that the first byte of the next line is at offset 0x0010 in the file. Byte number 

sixteen (in decimal) in the file has the value 0x20. The second line is 0x10 bytes 

long. Therefore, the third line as seen in the hex editor’s display shows data from 

byte number 0x30 onwards in the file. Different hex editors vary in how many 

bytes they show on a line, but they will usually show the offset of where the bytes 

are. In the example above, I have given the offset as 4 hex digits to save space on 

the page. Most hex editors will give the offset as 8 hex digits so that they can work 

with very large files. 

 

To make recognising patterns in hexadecimal easier, hex editors usually have a 

section to the right of each line of hex that shows if any of the bytes would be valid 

ASCII characters, and if so what they would be. [I will explain ASCII characters 

shortly, but for now, it is enough to know that ASCII is a generally accepted way of 

encoding letters of the alphabet with 8-bit numbers (bytes).] The bytes from our 

text file would look like this in a hex editor that showed the ASCII part: 

 
0000: 41 73 20 61 6e 20 65 78 61 6d 70 6c 65 20 6f 66 As an example of 

0010: 20 77 68 61 74 20 77 65 20 6d 69 67 68 74 20 73  what we might s 

0020: 65 65 20 69 6e 20 61 20 68 65 78 20 65 64 69 74 ee in a hex edit 

0030: 6f 72 2c 20 68 65 72 65 20 61 72 65 20 74 68 65 or, here are the 
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As the data in our example is all text, every byte represents a letter of the alphabet, 

so the whole of the right hand column is text. The very first byte of our file is 0x41, 

which is also the ASCII number for the letter “A”. The next byte is 0x73, which is 

the ASCII letter “s”. The next byte is 0x20, which is the ASCII number for a space. 

 

 

ASCII 

 

The abbreviation “ASCII” is short for the “American Standard Code for Information 

Interchange”. ASCII is a system that assigns a number to each letter of the alphabet, 

to each decimal digit, and to some punctuation. ASCII is a generally accepted 

standard for encoding basic text characters. By following the ASCII system of 

assigning particular numbers to characters, different computer programs can store 

and read text in the same way. It makes everything much easier to have a standard 

system. It is worth noting that the ASCII method of assigning numbers to 

characters is completely arbitrary, and its creation and its use is independent of 

how the processors of computers work, except for how each ASCII value is stored 

as one byte. 

 

Having a general understanding of ASCII is useful in understanding what you might 

see in a hex editor. 

 

In the ASCII system, each character is identified by 8 bits. Therefore, each 

character can fit in exactly one byte. Whether we choose to treat the value in that 

byte as binary, hexadecimal or decimal is a matter of choice. In some situations, it 

is easier to think of them as binary; in some situations, particularly when viewing 

them in a hex editor, it is easier to think of them as hexadecimal. Some people 

prefer to think of them as decimal numbers, but doing that is generally less useful. 

  

Being an American system, ASCII prioritises characters from a subset of the 

modern English alphabet. As well as letters, numbers and punctuation, there are 

some obsolete “control” characters, which were used to control early printers 

among other things. 

 

Note that a byte only represents an ASCII character if the computer program that is 

dealing with it chooses to interpret it as one. If a program is not specifically 

working with ASCII text (or it does not know that it should be), a byte will just be 

treated as a number. 
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The first 128 characters of ASCII, being the characters from 0x00 to 0x7f, are as 

follows. I have ignored the meanings of most of the control symbols: 

 

ASCII number ASCII number Character or 

as binary  as hex   meaning 

 

00000000 0x00  This is often used, arbitrarily, in programming  

     languages to mark the end of a piece of text. 

00000001 0x01   

00000010 0x02   

00000011 0x03   

00000100 0x04   

00000101 0x05   

00000110 0x06   

00000111 0x07  On older computers, reading this character would  

     make the computer beep. 

00001000 0x08  Backspace 

00001001 0x09  Tab 

00001010 0x0a  In Linux, this is treated as a new line character. It  

     means any text starts on a new line after this  

     appears. In Windows, this is treated as a new line  

     character when it is preceded by 0x0d. 

00001011 0x0b 

00001100 0x0c  In some text editors, this indicates a new page. 

00001101 0x0d  In Windows, 0x0d followed by 0x0a is treated as 

     a new line. 

00001110 0x0e 

00001111 0x0f 

 

00010000 0x10 

00010001 0x11 

00010010 0x12 

00010011 0x13 

00010100 0x14 

00010101 0x15 

00010110 0x16 

00010111 0x17 

00011000 0x18 

00011001 0x19 

00011010 0x1a 

00011011 0x1b 
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ASCII number ASCII number Character or 

as binary  as hex   meaning 

 

00011100 0x1c 

00011101 0x1d 

00011110 0x1e 

00011111 0x1f 

 

00100000 0x20   Space: “ ” 

00100001 0x21   ! 

00100010 0x22   " 

00100011 0x23   # 

00100100 0x24   $ 

00100101 0x25   % 

00100110 0x26   & 

00100111 0x27   ' 

00101000 0x28   ( 

00101001 0x29   ) 

00101010 0x2a   * 

00101011 0x2b   + 

00101100 0x2c   , 

00101101 0x2d   - 

00101110 0x2e   . 

00101111 0x2f   / 

 

00110000 0x30   0 

00110001 0x31   1 

00110010 0x32   2 

00110011 0x33   3 

00110100 0x34   4 

00110101 0x35   5 

00110110 0x36   6 

00110111 0x37   7 

00111000 0x38   8 

00111001 0x39   9  

    [To convert the ASCII code of a number to the actual 

    number that it represents, we can just subtract 0x30.] 
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ASCII number ASCII number Character or 

as binary  as hex   meaning 

 

00111010 0x3a   : 

00111011 0x3b   ; 

00111100 0x3c   < 

00111101 0x3d   = 

00111110 0x3e   > 

00111111 0x3f   ? 

 

 

01000000 0x40   @ 

01000001 0x41   A 

01000010 0x42   B 

01000011 0x43   C 

01000100 0x44   D 

01000101 0x45   E 

01000110 0x46   F 

01000111 0x47   G 

01001000 0x48   H 

01001001 0x49   I 

01001010 0x4a   J 

01001011 0x4b   K 

01001100 0x4c   L 

01001101 0x4d   M 

01001110 0x4e   N 

01001111 0x4f   O 

 

01010000 0x50   P 

01010001 0x51   Q 

01010010 0x52   R 

01010011 0x53   S 

01010100 0x54   T 

01010101 0x55   U 

01010110 0x56   V 

01010111 0x57   W 

01011000 0x58   X 

01011001 0x59   Y 

01011010 0x5a   Z 

 



A Book About Waves: Chapter 40 Binary and Hexadecimal © Tim Warriner 2024 [2024-02-25] 38 

 
ASCII number ASCII number Character or 

as binary  as hex   meaning 

 

01011011 0x5b   [ 

01011100 0x5c   \ 

01011101 0x5d   ] 

01011110 0x5e   ^ 

01011111 0x5f   _ 

 

01100000 0x60   ` 

01100001 0x61   a 

01100010 0x62   b 

01100011 0x63   c 

01100100 0x64   d 

01100101 0x65   e 

01100110 0x66   f 

01100111 0x67   g 

01101000 0x68   h 

01101001 0x69   i 

01101010 0x6a   j 

01101011 0x6b   k 

01101100 0x6c   l 

01101101 0x6d   m 

01101110 0x6e   n 

01101111 0x6f   o 

 

01110000 0x70   p 

01110001 0x71   q 

01110010 0x72   r 

01110011 0x73   s 

01110100 0x74   t 

01110101 0x75   u 

01110110 0x76   v 

01110111 0x77   w 

01111000 0x78   x 

01111001 0x79   y 

01111010 0x7a   z 

   [To convert a lower-case letter to upper case, we can just subtract  

   0x20 or set the third bit from the left to zero.] 
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ASCII number ASCII number Character or 

as binary  as hex   meaning 

 

01111011 0x7b    { 

01111100 0x7c    | 

01111101 0x7d    } 

01111110 0x7e    ~ 

01111111 0x7f   

 

The ASCII characters from 0x80 to 0xff are called the “Extended ASCII” characters 

because they are an extension to the original ASCII system, which used only 7 of 

the available 8 bits of a byte. There are numerous variations for the meanings of 

the Extended ASCII bytes, depending on the encoding and language being used. 

These variations are called “code pages”. The most commonly used of these were 

defined by Microsoft, and have the names “Windows-1250”, “Windows-1251”, 

“Windows-1252” and so on. Among these are the following: 

 “Windows-1250” uses the bytes to represent symbols and accented letters 

from Eastern and Central European alphabets that are based on the Latin 

alphabet (such as those used with Polish and Czech). 

 “Windows-1251” uses the bytes to represent symbols and letters from a 

subset of the Cyrillic alphabet (as used in Russian and Ukrainian). 

 “Windows-1252” uses the bytes to represent symbols and accented letters 

from Western European alphabets that are based on the Latin alphabet 

(such as French). 

 “Windows-1254” is for accented Turkish letters. 

 “Windows-1255” is for Hebrew letters. 

 “Windows-1256” is for Arabic letters. 

 

In each system, the bytes from 0x00 to 0x7f still have the same meaning as in the 

long list from before. 

 

The different interpretations of the bytes from 0x80 onwards mean that text that is 

supposed to be from one particular language will be displayed incorrectly if the 

wrong interpretation is used. If someone writes Russian text in an ASCII text file on 

a Russian version of Microsoft Windows, that file will appear as random accented 

Latin letters and symbols on an English version of Microsoft Windows. It will 

appear as random Arabic letters and symbols in an Arabic version of Windows. 

This is one of the big flaws of ASCII – it is not particularly good for non-English 

alphabets. 
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Now that memory is cheaper, and computers and networks are faster, ASCII has 

generally been replaced with Unicode. Unicode is a similar system, which, 

depending on its implementation, can use one, two, or more bytes to represent a 

character. Alphabets that have many characters might use three bytes or more for 

each character. The “0x00 to 0x7f” ASCII set of Latin characters is portrayed with 

one byte in the Unicode version called UTF-8, or two bytes in the Unicode version 

called UTF-16. As there is no limit to the number of bytes that can be used per 

character, each Unicode value represents a unique character or symbol, and there 

can never be any confusion between languages. 

 

 

More hex editor examples 

 

Here is the very start of a Microsoft Windows executable (that is to say, a program 

or application) as opened with a hex editor: 

 
0000: 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ.............. 

0010: b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ........@....... 

0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 

0030: 00 00 00 00 00 00 00 00 00 00 00 00 c8 00 00 00 ................ 

0040: 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 ........!..L.!Th 

0050: 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f is program canno 

0060: 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 t be run in DOS  

 

The first two bytes are 0x4d, 0x5a, which are the ASCII letters “MZ”. This is what is 

called the “signature” of a file. It gives clues to the operating system, or any 

program trying to open it, as to what sort of file this is. Generally, Microsoft 

Windows executables will start with these letters or the operating system will 

complain. The dots on the right hand side indicate that if the associated byte on the 

left hand side were interpreted as ASCII, it would not be a letter, number or 

punctuation. Due to the ambiguity of ASCII characters over 0x80, most hex editors 

do not give equivalent letters for those bytes, and just have a “.” instead. Therefore, 

if there were Cyrillic ASCII text in a file, we would have to recognise it by the bytes 

themselves, and the hex editor would not help. 

 

The “@” symbol, corresponding to the byte 0x40 is a coincidence. Hex editors 

cannot know if a value is intended to be a letter, number or punctuation, so they 

presume, usually incorrectly, that anything that could be, will be. 
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The part of the file that we see above is part of what is called the “header”. The 

header of a file is information that indicates to the operating system, or the 

program that opens it, certain attributes of the data within the file. For example, 

the full header for an executable will list where in the file the commands are, 

where the data is, where any resources such as icons and dialog layouts are stored, 

and so on. Not all files have headers – for example, a basic ASCII text file does not 

need one. 

 

The following is what the start of a particular TIFF image file looks like when 

opened in a hex editor: 

 
0000: 49 49 2a 00 08 00 00 00 0a 00 00 01 03 00 01 00 II*............. 

0010: 00 00 00 08 00 00 01 01 03 00 01 00 00 00 00 02 ................ 

0020: 00 00 03 01 03 00 01 00 00 00 01 00 00 00 06 01 ................ 

0030: 03 00 01 00 00 00 01 00 00 00 11 01 04 00 01 00 ................ 

0040: 00 00 96 00 00 00 16 01 04 00 01 00 00 00 00 02 ................ 

0050: 00 00 17 01 04 00 01 00 00 00 00 00 02 00 1a 01 ................ 

0060: 05 00 01 00 00 00 86 00 00 00 1b 01 05 00 01 00 ................ 

0070: 00 00 8e 00 00 00 28 01 03 00 01 00 00 00 03 00 ......(......... 

0080: 00 00 00 00 00 00 40 00 00 00 01 00 00 00 40 00 ......@.......@. 

0090: 00 00 01 00 00 00 ff ff ff ff ff ff ff ff ff ff ................ 

00a0: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ 

 

The first two bytes are 0x49, 0x49. These indicate to any program opening the 

TIFF file that, first, this is a TIFF file, and second, how the data within it is stored. 

The bytes 0x2a, 0x00 tell the program which version of the TIFF image format is 

being used. The following bytes up to the byte at offset 0x96 tell the program how 

many rows and columns of pixels there are in the TIFF file, whether the data is 

compressed, what the resolution is, and where the actual image data starts. This 

particular file is an uncompressed black and white bitmapped TIFF file, which 

means that it assigns one bit to every pixel. That bit will be either a 1 to indicate a 

white pixel, or a 0 to indicate a black pixel. The actual image data starts at offset 

0x96. The data starts as a sequence of 0xff bytes, where each byte represents 8 

consecutive white pixels. The “*” sign, the bracket and the “@” sign on the right-

hand side are coincidences where a hexadecimal value happens also to be a 

readable ASCII character. 
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Memory 

 

When programmers run programs they have written, it can be useful to know 

exactly what is going on in the computer, so they can find mistakes or improve 

their code. To do this they will use a program that steps through each command in 

turn, while showing what is happening inside the processor, and what is stored in 

the relevant part of memory. Such a program is called a “debugger” because it is 

used to debug software. When viewing what is stored in memory, a debugger will 

show a very similar view to what we might see in a hex editor. The main difference 

will be that the offsets will not generally start at zero, but instead at an offset from 

the start of the computer’s memory being assigned to the program. For a Windows 

program intended for a 32-bit Intel processor, we might see something such as 

this: 

 
040ca100: c3 eb 12 90 90 90 90 00 48 33 C0 48 8B 74 24 40 ........H3.H.t$@ 

 

In this example, the ASCII characters on the right-hand side are just coincidences 

where the bytes happen to have values equal to valid ASCII characters. 

 

 

 

Other information 
 

Here is some more information about hexadecimal and binary. 

 

Bit number 

 

When identifying entries in a list using binary or hexadecimal, it makes sense to 

treat the first entry as item zero, instead of item one. This is because, by doing so, 

we are able to count higher. For example, a list of names might start as so: 

 

Name number 0: Gertrude 

Name number 1: Gladys 

Name number 2: Gwen 

Name number 3: Gwynne 

... and so on. 

 

If we are constrained by using bytes, we can distinguish 256 different names if we 

start at zero. We would have name number 0x00 up to name number 0xff. If we 

start at 1, we can only distinguish 255 different names – we would have name 

number 0x01 up to name number 0xff. 
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This way of counting from zero is also used when identifying a particular bit in a 

binary number. When identifying the bits of a binary number, we count from the 

right hand side. Bit 0 is the rightmost bit. With a 8-bit byte, bit 7 is the leftmost bit. 

With a 16-bit word, bit 15 is the leftmost bit. With a 32-bit dword, bit 31 is the 

leftmost bit. With a 64-bit qword, bit 63 is the leftmost bit. 

 

In the following binary number as a byte: 

00000001 

... bit 0 has the value “1”. All the other bits have the value “0”. Bit 7 (the leftmost 

bit) is “0”. 

 

With this binary number: 

10000000 

... bit 0 (the rightmost bit) has the value “0”, and bit 7 (the leftmost bit) has the 

value “1”. 

 

With the binary number: 

01001110 

 bit 7 is 0 

 bit 6 is 1 

 bit 5 is 0 

 bit 4 is 0 

 bit 3 is 1 

 bit 2 is 1 

 bit 1 is 1 

 bit 0 is 0 

 

As well as identifying bits in binary numbers, we can take advantage of how there 

is a one-to-one relationship between binary and hexadecimal, and identify the bits 

within hexadecimal numbers. For example, in the hex byte 0xf1: 

 bit 7 is 1 

 bit 6 is 1 

 bit 5 is 1 

 bit 4 is 1 

 bit 3 is 0 

 bit 2 is 0 

 bit 1 is 0 

 bit 0 is 1 
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This is all because 0xf1 is 11110001 in binary. Despite speaking about a 

hexadecimal number and not a binary number, we can still treat it as consisting of 

bits. 

 

 

Significant bits 

 

When dealing in binary and hexadecimal, it is common to see the phrases “most 

significant bit” and “least significant bit”. 

 

The most significant bit is the leftmost bit of a byte, word, dword or qword. It is 

called this because the leftmost bit is the bit whose presence or absence has the 

greatest effect on the overall size of a number. For example, the leftmost bit in the 

binary number 10000001 makes the difference between the number being 0x81 or 

0x01. This is a difference of 128 in decimal. The term “most significant bit” is often 

abbreviated to “msb”. 

 

The least significant bit is the rightmost bit. This is because the presence of the 

rightmost bit has the least effect on the overall size of a number. The rightmost bit 

of the binary number 11111111 is the difference between the number being 0xff 

and 0xfe (255 and 254 in decimal). There is only a difference of 1. The term “least 

significant bit” is often abbreviated to “lsb”. 

 

It is obviously quicker and more descriptive to say “leftmost bit” and “rightmost 

bit”, but some people prefer the terms “most significant” and “least significant”. 

One problem with the term “significant” is that it only makes sense if the byte, 

word, dword or qword is being used to count. In an ASCII byte, for example, every 

bit is just as significant as any other because the byte is not being used as a 

number, but as an index to an item in a table of characters. 

 

 

Storing data in memory or files 

 

We will imagine a computer processor is dealing with the 32-bit dword, 

0x87654321. When it has finished working with the dword and it wants to store it 

for later, perhaps in memory or to disk, there are two ways that it can lay down the 

number. 
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The first way is for the processor to place the number down in the order of the 

digits. This is the most intuitive way, and is how most people would expect it to do 

it. This means that if we were looking at a file in a hex editor, with the dword 

placed at the very start, we would see this: 

 
0000: 87 65 43 21 00 00 00 00 00 00 00 00 00 00 00 00 .eC!............ 

 

[Note that each 0x00 is just filler that I have put in to make up a full line. The 

letters “eC!” are there because, by chance, the bytes 0x65, 0x43, and 0x21 are also 

valid readable ASCII characters.] 

 

If the computer processor then wanted to read the dword from the file or memory, 

it would read the whole dword in one go. The reason it would work in this way 

hardly needs explaining, as it is exactly what one would expect it to do. 

 

The second way a computer processor might place a dword into memory or to a 

file is by splitting the dword into bytes and putting them into reverse order. As we 

are starting with the dword 0x87654321, this means that the dword becomes the 

bytes 0x87, 0x65, 0x43, 0x21, and each byte is put down in reverse order. A file 

containing the result of such a thing as the very first few bytes would look like this: 

 
0000: 21 43 65 87 00 00 00 00 00 00 00 00 00 00 00 00 !Ce............. 

 

[Again, the zeroes are filler to make up a full line, and the letters “!Ce” are there 

because the bytes are, by coincidence, valid readable ASCII characters.] 

 

Although this method seems to overly complicate matters, it can be useful. If we 

want to find the first byte of the stored dword 0x87654321, we look at the offset in 

the file of where we put the whole dword. The first byte of 0x87654321 is 0x21, 

and it is at offset 0x0000 in the file. Similarly, if we wanted to find the first word of 

0x87654321, we would look at offset 0x0000 in the file, and read the two bytes 

there (0x21 and 0x43), which because we are using this backwards ordering 

system, we rearrange to be 0x4321. Therefore, this backwards method allows us 

easily to retrieve the lower bytes of words, dwords and qwords without having to 

know whether we are using words, dwords and qwords. It is a useful method, but 

it is mostly hidden from anyone who is not programming in assembly language, 

examining files with hex editors, or debugging software. 

 

As with a dword, if a computer processor were working in this system and storing 

a qword or a word in memory or a file, it would similarly put its bytes in reverse 

order. If the processor were storing a byte, then the byte would be the same within 

the computer processor as it would be stored in a file or memory. 
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If the processor stored the qword, 0x8070605040302010 into memory or a file, it 

would appear as so: 

 
0000: 10 20 30 40 50 60 70 80 00 00 00 00 00 00 00 00 ."3DUfw......... 

 

[Note that the offset would vary depending on where in the file or memory the 

number was placed.] 

 

If the processor stored the dword, 0x40302010 it would appear as so: 

 
0000: 10 20 30 40 00 00 00 00 00 00 00 00 00 00 00 00 ."3D............ 

 

If the processor stored the word, 0x2010 it would appear as so: 

 
0000: 10 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .".............. 

 

If the processor stored the byte, 0x10 it would appear as so: 

 
0000: 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 

 

If we wanted to store a half byte (4 bits), we would first have to turn it into a whole 

byte, perhaps with the first 4 bits set to zero. The result of storing it would be the 

same as if we were storing a byte. 

 

This “backwards” method of storing data is called the “little-endian” method of 

storing data. The “lowest” bytes are placed first, which we can rephrase as the 

“littlest end of the word, dword or qword is placed first”. Given that Intel 

processors use this method, at the time of writing, this might be as common as the 

ostensibly more sensible “forwards” method, which is called “big-endian”. We can 

think of big-endian as placing the “highest” or “biggest” bytes first. Although little-

endian seems unintuitive, the more you are exposed to it, the less puzzling it will 

seem. 

 

When something is stored in memory, it is stored using the system that the 

processor uses. Therefore, (at the time this is being written) an Intel or AMD 

processor will always use the “backwards” little-endian system when putting a 

number in memory. When something is stored in a file, the system that is used 

depends on the program that is storing the data. However, it is much easier and 

quicker to store data in a way that is consistent with the processor. Doing so means 

that something can be copied directly from memory into a file, without needing 

rearranging. Other processors might use the “forwards” big-endian system, and 

some processors are able to use both systems. 
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In a TIFF image file, the first two bytes of the header tell the image-viewing 

software whether the data has been stored with the big-endian or little-endian 

system. If the first two bytes are the ASCII letters “II”, then the data in the file is 

little-endian; if the bytes are “MM”, the data is big-endian. This allows TIFF files to 

be viewed on computers that operate in either the big-endian system or the little-

endian system, without reading the data the wrong way around. If a program is 

going to be reading data in group sizes larger than bytes, it needs to have a way of 

knowing which system is being used, or it might misinterpret the data. 

 

If we have several numbers in sequence, then we store them all in either the little-

endian way or the big-endian way. As an example, we will look at this list of 

dwords: 
0x0000ffff 

0x11223344 

0x55667788 

0xfefeffff 

 

Stored in the little-endian way, they would look like this in a file viewed in a hex 

editor: 
0000: ff ff 00 00 44 33 22 11 88 77 66 55 ff ff fe fe ....D3"..wfU.... 

 

Stored in the big-endian way, they would look like this: 
0000: 00 00 ff ff 11 22 33 44 55 66 77 88 fe fe ff ff ....."3DUfw..... 

 

When it comes to storing ASCII text, each letter is represented by a single byte, so 

the bytes are laid down in their original order. 

 
0000: 48 65 72 65 27 73 20 73 6f 6d 65 20 74 65 78 74 Here's some text 

 

When it comes to storing Unicode text, and when the characters are being 

portrayed by 16-bit words each, the 16-bit words are stored in either the little-

endian way or the big-endian way. 
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Octal 

 

Octal is a counting system that is based around the number 8. If we were to count 

in octal, we would proceed as follows: 

 

0 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

 

... and so on. 

 

For some reason, octal is often taught as if it were as useful to computers as 

hexadecimal or binary. Computers do not natively use octal, and it is much easier 

to be using hexadecimal, binary and decimal. I only mention octal here in case you 

should see it mentioned elsewhere. 
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Negative numbers 
 

Away from a computer, we can portray negative numbers and fractions in binary 

and hexadecimal in the same way that we do with decimal numbers. For example, 

the number −12 in decimal could be written as −1100 in binary or −c [or −0xc] in 

hexadecimal. The decimal number 2.5 could be written as 10.1 in binary or 2.8 in 

hexadecimal. The number −1011.0011001 is a perfectly valid way to write a 

number in binary. When it comes to computers, we cannot write numbers in this 

way because the default system of counting in binary or hexadecimal for 

computers only allows positive integers. There is no place for a decimal point or a 

negative sign in one of the group types for bits. 

 

To allow computers to work with negative numbers and fractions, slightly 

awkward workarounds were invented. These involve interpreting seemingly 

normal hexadecimal or binary values in a different way. In other words, we still 

use bytes, words, dwords and qwords, and these still contain binary bits. However, 

we alter the bits of the number in a special way before we put the number into a 

byte, word, dword or qword. Someone reading the byte, word, dword or qword 

must know that they need to interpret it differently, or else the value will be 

misinterpreted as a positive integer. 

 

In this section, we will look at how computers manage negative numbers. 

 

 

Two’s complement 

 

The standard way that computers express negative numbers in binary or 

hexadecimal is called “two’s complement”. The general idea is that the leftmost bit 

(the highest bit) is set to 0 if the number is positive, and it is set to 1 if the rest of 

the number is negative. This means that we have fewer bits with which to portray 

values, but it allows us to have both positive and negative numbers – as long as we 

and anyone else using the number know that it should be interpreted in this way. The 

actual method is slightly more complicated than just setting the leftmost bit, as we 

will see shortly. 

 

Two’s complement allows one byte to portray the numbers from −0x80 to +0x7f 

(−128 to +127 in decimal). It allows a word to hold the numbers from −0x8000 to 

+0x7fff (−32,768 to +32,767 in decimal). It allows a dword to hold the numbers 

from −0x80000000 to +0x7fffffff (−2,147,483,648 to +2,147,483,647 in decimal). It 

allows a qword to hold values from −0x8000000000000000 to +0x7fffffffffffffff 

(−9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 in decimal). 
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All of this means that if we only wanted to store positive integers, using two’s 

complement would only allow us to store 1 less than half the highest value that we 

could store normally. 

 

Trying to store a value outside of the available ranges will result in the number 

being stored incorrectly, and later, being interpreted incorrectly. 

 

The way to format a number as a two’s complement number is fairly easy. We start 

by making sure that our number is not too high or too low to fit in the byte, word, 

dword or qword that we are using. 

 

If the number we have is negative, then: 

 We make it positive. 

 We subtract 1. 

 We “flip” all the bits apart from the leftmost bit. In other words, if a bit is 0, 

we change it to 1; if a bit is 1, we change it to 0. 

 We set the leftmost bit to 1 to indicate that it is a negative number. 

 

If the number we have is positive, then: 

 We set the leftmost bit to 0 to indicate that it is a positive number. 

[Strictly speaking, it should be 0 already, because if it is not, then the 

number is too large to be encoded as a two’s complement number.] 

 

When we have a negative number, it will always be the case that once we have 

subtracted 1, the leftmost bit will be zero. Therefore, we can speed up the method 

by flipping all of the bits including the leftmost bit in one go – we do not need to set 

the leftmost bit to 1 to indicate that it is a negative number because the flipping 

will do that for us. Therefore, a quicker method to store a negative number is: 

 We make it positive. 

 We subtract 1. 

 We flip all the bits. In other words, if a bit is 0, we change it to 1; if a bit is 1, 

we change it to 0. 

 

The “complement” of a bit is its opposite. The complement of 0 is 1, and the 

complement of 1 is 0. When flipping a bit from 0 to 1, or 1 to 0, we are finding its 

complement. For negative numbers, we find the complement of every bit. As we 

are using binary and complementing the binary digits, the system is called “two’s 

complement”. 
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When reading a converted value, as long as the processor or software (or a person 

reading it) is aware that the value is a two’s complement number, it will be known 

what the value represents. On the other hand, if a negative two’s complement 

number is read as a normal number, it will be misinterpreted as a different value. 

There is no way of knowing whether a given hex or binary value is intended to be a 

two’s complement number or not by looking at it. It needs context to be decoded 

correctly. Two’s complement is really just a slightly awkward compromise that 

reuses normal binary and hex in a different way. 

 

 

Examples 

 

We will look at some simple examples involving bytes. The first thing to realise is 

that any positive number under and including 0x7f will be the same whether it is in 

two’s complement or not. A value higher than 0x7f cannot be converted to a two’s 

complement byte, as the maximum possible positive value is 0x7f. The byte 0x7f is 

01111111 in binary. Any number higher than this would have a 1 as its leftmost 

digit. The number 0x23 as a two’s complement byte will still be 0x23. The number 

0x70 will still be 0x70 as a two’s complement byte. The number 0x00 will still be 

0x00. 

 

If we want to express −1 as a negative two’s complement byte, we first make it 

positive. It becomes: 

00000001 

 

We subtract 1 to end up with: 

00000000 

 

We then flip all the bits, which also has the effect of setting the leftmost bit to 1 to 

indicate that it is a negative number: 

11111111 

 

This is 0xff in hex, so we can say that −1 as a two’s complement byte is 0xff. 

 

A useful pattern to recognise is that, in two’s complement, −1 is 0xff as a byte, 0xffff 

as a word, 0xffffffff as a dword, and 0xffffffffffffffff as a qword. It pays to remember 

that if we were not interpreting the bytes as two’s complement numbers, the 

values would have their normal hexadecimal meanings, with 0xff being 255 in 

decimal, 0xffff being 65,535, and so on. There is no way of knowing by looking at a 

number whether it is intended to be a two’s complement number or not – we have 

to know the context in which it is being used. 
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If we want −2 as a two’s complement byte, we first make it positive. It becomes: 

00000010 

 

We subtract 1 to end up with: 

00000001 

 

We then flip all the bits: 

11111110 

 

This is 0xfe in hex. The number −2, when using two’s complement, is 0xfe as a byte, 

0xfffe as a word, 0xfffffffe as a dword, and 0xfffffffffffffffe as a qword. If we were 

not using two’s complement, then we could not express −2 in hex on a computer, 

and the values 0xfe, 0xfffe, 0xfffffffe and 0xfffffffffffffffe would have their normal 

meanings. 

 

Now, we will encode the largest possible negative number for a byte, which is 

−128. To do this, we first make it positive, so it becomes +128 in decimal, which, in 

binary is: 

1000000 

 

We might think this number is too large to be encoded because it uses the leftmost 

bit. However, the next step is to subtract 1, which results in: 

01111111 

 

Now the number does not use the leftmost bit. This is how the negative numbers 

for a byte can reach down to −128, but the positive values can only reach up to 

+127. 

 

We then flip the bits: 

10000000 

 

This is 0x80, so we can say that the decimal number −128 as a two’s complement 

number is 0x80. 
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Thoughts 

 

Any hexadecimal two’s complement number that starts with 8, 9, a, b, c, d, e or f 

must be a negative number – for it to start with one of those digits, it must have the 

leftmost bit set to 1: 

 

8 is 1000 

9 is 1001 

a is 1010 

b is 1011 

c is 1100 

d is 1101 

e is 1110 

f is 1111 

 

Any two’s complement number that starts with 0, 1, 2, 3, 4, 5, 6, or 7 must be a 

positive number – for it to start with one of those digits, it must have the leftmost 

bit set to 0: 

 

0 is 0000 

1 is 0001 

2 is 0010 

3 is 0011 

4 is 0100 

5 is 0101 

6 is 0110 

7 is 0111 

 

From this we know that 0xa4, for example, must be a negative number and that 

0x74, for example, must be a positive number when those numbers are intended to 

be, and being interpreted as, two’s complement numbers. If the numbers are not 

intended to be two’s complement numbers, or they are not being interpreted as 

two’s complement numbers, then both 0xa4 and 0x74 will be positive numbers, as 

all non-two’s complement numbers are. 

 

 



A Book About Waves: Chapter 40 Binary and Hexadecimal © Tim Warriner 2024 [2024-02-25] 54 

 
More examples 

 

Now we will look at −7 as a two’s complement dword. First, we make it positive, 

and write it as a binary dword: [I have put in spaces to make it easier to read] 

00000000 00000000 00000000 00000111 

 

We subtract 1: 

00000000 00000000 00000000 00000110 

 

Then we flip the bits: 

11111111 11111111 11111111 11111001 

 

This is 0xfffffff9 in hex. Therefore, −7 in decimal is 0xfffffff9 in hexadecimal as a 

two’s complement dword. [As a byte, it would be 0xf9. As a word, it would be 

0xfff9.] 

 

 

Another method 

 

Another way to calculate a two’s complement number is to take the negative 

number we want to express, make it positive, subtract 1, and then subtract the 

number from 0xff (if we are using bytes), from 0xffff (if we are using words), from 

0xffffffff (if we are using dwords), or from 0xffffffffffffffff (if we are using qwords). 

 

As an example, we will say that we want to portray the hex number −0x67 as a 

two’s complement byte. We make it positive as +0x67, then subtract 1 to get 0x66, 

and then subtract that from 0xff. We end up with 0x99. 

 

This method works because subtracting a binary number from a second binary 

number that is all 1s has the same effect as flipping the bits of the first number. For 

−0x67 as a byte, we would be calculating 0xff minus 0x66, which is: 

 

11111111 

... minus: 

01100110 

... which is: 

10011001 

... which is: 

0x99 in hex. 

 



A Book About Waves: Chapter 40 Binary and Hexadecimal © Tim Warriner 2024 [2024-02-25] 55 

 
Whether this method is better than the bit flipping method depends on what it is 

we are doing. If we have a hexadecimal calculator, and one that works only with 

positive numbers, this method might be quicker than the bit flipping method. 

[However, if we have a hexadecimal calculator, it is likely to be able to convert 

negative numbers into two’s complement numbers anyway.] 

 

 

Converting away from two’s complement 

 

Converting from a two’s complement number to a normal number is easy. If the 

two’s complement number is positive (it has the leftmost bit set to 0), then we 

leave it as it is. If the two’s complement number is negative (it has the leftmost bit 

set to 1), we proceed as follows: 

 

 We flip all the bits 

 We add 1 

 We put a minus sign in front of the number 

 

As an example, we will convert 0xd5 to a non-two’s complement number. As the 

hexadecimal digit “d” is 1101 in binary, we can tell that this is a negative number – 

the leftmost bit is 1. The number in full is 11010101. We flip all the bits to produce: 

00101010 

... then we add 1: 

00101011 

... then we put a minus sign in front of the number: 

−00101011 

 

This is the same as −0x2b in hexadecimal, which is −43 in decimal. 

 

 

Why the system is how it is 

 

If we are given a two’s complement number and we know that it is supposed to be a 

two’s complement number, we can tell if it is a negative number or not by whether 

the leftmost bit is set to 1 or not. A negative number always has the leftmost bit set 

to 1, and a positive number always has the leftmost bit set to 0. 

 

When converting negative numbers to two’s complement, we start by making the 

number positive and then subtracting 1. This is how the generally agreed system 

works. You might think that an easier system would keep the number the same 

and set the leftmost bit to 1 for a negative number, and set it to 0 for a positive 
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number. However, doing this would not make full use of the available numbers. For 

an 8-bit byte, we would be able to count down to 1111111, which in the new 

system would be −127, and we would be able to count up to 01111111, which in 

the new system (and in two’s complement) would be +127. However, we would 

have two numbers being used for zero: 10000000 and 00000000, which would be 

negative zero and positive zero. The two’s complement system makes the best use 

of the available space by not having two zeroes, and by having one extra negative 

number. We can count from −128 up to +127. The system is ever so slightly more 

complicated than it could be, but it enables us to store one more number. It also 

allows us to perform addition with negative numbers more easily, as we will see 

shortly. 

 

 

Flipping the bits 

 

The simplest way to flip the bits of a hexadecimal number is to convert it to binary 

[each hex digit is turned into 4 binary digits], then flip the bits, and then convert 

the result back to hex [each group of 4 binary bits are turned into 1 hex digit.] 

Alternatively, it can be quicker to remember which hex digit becomes which hex 

digit when the bits are flipped, as shown in this table: 

 

Hex Hex digit after the 

digit bits have been flipped 

 

0  f 

1  e 

2  d 

3  c 

4  b 

5  a 

6  9 

7  8 

8  7 

9  6 

a  5 

b  4 

c  3 

d  2 

e  1 

f  0 
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A rule for remembering the table is that 0x7 becomes 0x8, and 0x8 becomes 0x7. 

The values either side become turned into the values the other side of 7 or 8. We 

only really need to know half the table as the top half is mirrored in the bottom 

half. If we learn the table, we will be able to know instantly, for example, that if the 

bits are flipped in 0x053e2076, we will end up with 0xfac1df89. If you were going 

to be converting a lot of numbers without a calculator, it might be useful to learn 

the table. 

 

 

Maths 

 

One reason that two’s complement is a useful system is that we can perform 

addition and subtraction on two two’s complement numbers without needing to 

know if they are two’s complement or not, and the results will still be correct. As a 

simple example, we will add −1 (0xff) and +1 (0x01). As binary, these are: 

11111111 

... added to: 

00000001 

 

If we were dealing with words, dwords or qwords, the above addition would result 

in the nine-digit number: 

100000000 

However, as we are dealing in bytes, and bytes only have 8 bits, the whole number 

rolls over to zero. Therefore, the result is 00000000 in binary, which is 0x00 in 

hex. 

 

We will add the bytes −3 (0xfd) and −4 (0xfc). This addition is: 

11111101 

... added to: 

11111100 

 

The result is 9 bits long: 

111111001 

... but because we are dealing with bytes, this is truncated to 8 bits by ignoring the 

ninth bit, as so: 

11111001 

... which is 0xf9 in hex, which, as a two’s complement number, is −7 in decimal. 
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We will add the two’s complement numbers 0xf7 and 0x23. As two’s complement 

numbers, these are −9 and +35 in decimal. In binary, the calculation is as so: 

 

11110111 

... added to: 

00100011 

... which is the 9-digit number: 

100011010 

... but as we are dealing in bytes, we truncate it to 8 bits, and have: 

00011010 

 

We can instantly tell that this is a positive number because the leftmost bit is zero. 

This result is 0x1a in hex, which, whether we treat it as a two’s complement 

number or not, is +26 in decimal. 

 

 

More on negative numbers 

 

In programming, a common term for a two’s complement number is a “signed 

integer”, where the word “signed” means that the decimal equivalent would be 

portrayed with a plus sign or a minus sign. A normal number would be called an 

“unsigned integer”. A signed integer might be positive or negative, and will always 

be portrayed using the two’s complement system. On the other hand, an unsigned 

integer will always be positive, and will always be portrayed normally with binary 

or hex numbers. 

 

In higher-level programming languages, the details of what a two’s complement 

number is, or how it is encoded, are generally hidden from the programmer. If you 

are dealing with files containing data stored as two’s complement numbers, it is 

helpful to have at least a passing understanding of how they work. 

 

Although two’s complement seems like a slightly contrived way of encoding 

negative integers, computer processors have specific commands that work with 

them, and the system is generally accepted. 
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There are two likely ways in which using two’s complement numbers will lead to 

mistakes: 

 

 The first is not knowing whether a byte, word, dword or qword should be 

interpreted as being a two’s complement number or not. A value that 

should be interpreted as a negative number represents a completely 

different number if it is treated normally. The most extreme example of this 

is 0xffffffffffffffff, which, as a two’s complement qword is hugely lower than 

it is as a normal number. 

 

Whether a byte, word, dword or qword is acting as a two’s complement 

number relates only to whether someone wants to treat it as such. For a 

byte sitting in memory, there is literally no difference between 0xff meaning 

“255” in decimal, and 0xff meaning “−1” in decimal. They are both 0xff. You 

cannot tell if a byte is meant to be a signed integer or not by looking at it. 

The processor itself does not even know unless it is in the middle of 

operating on such a value. However, if you know that the byte is a signed 

integer because you created it yourself, for example, or because you know 

the context of how it is being used, you can perform maths on it that uses 

this knowledge. Similarly, once a computer processor is told to act as if the 

byte is a signed integer, it can treat it accordingly. 

 

 The second way of making mistakes is to forget that the highest possible 

positive number in a two’s complement number is 1 less than half of what it 

would be normally. For example, a byte can normally count up to 0xff (255 

in decimal), but if it is being used to hold a two’s complement number, the 

maximum is only 0x7f (127 in decimal). 

 

If 1 were added to 0x7f as a normal byte, we would get 0x80, which is +128 

in decimal. 

 

If we add 1 to 0x7f, when 0x7f is being treated as a two’s complement 

number, and whatever it is that is doing the adding knows this, we will get 

0x00 because we would have gone past the maximum possible positive 

value, and rolled over to zero. A computer processor would keep the 

number positive and not let it go above 0x7f. 

 

If we add 1 to 0x7f, when it is being treated as a two’s complement number, 

but whatever is doing the adding does *not* know this, we would end up with 

0x80, which, in two’s complement, is −128. Instead of the number 

increasing by 1, it has fallen by 255. 
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The largest positive number we can have in a two’s complement signed byte is: 

+127 in decimal, which is 0x7f in hex and 01111111 in binary. 

 

The largest negative number we can have in a two’s complement signed byte is: 

−128 in decimal, which is 0x80 in hex and 10000000 in binary. 

 

If we ignore zero, the smallest positive number we can have in a two’s complement 

signed byte is: 

+1 in decimal, which is 0x01 in hex and 00000001 in binary. 

 

The smallest negative number we can have in a two’s complement signed byte is: 

−1 in decimal, which is 0xff in hex and 11111111 in binary. 

 

 

 

Non-integers 
 

We have just seen how computers store negative numbers in hexadecimal and 

binary. The method is essentially a contrived workaround that redefines how 

hexadecimal and binary normally work. Now we will look at the standard way that 

computers store non-integers (fractions) using hex and binary. This also redefines 

how hex and binary normally work. 

 

A computer stores a non-integer using binary or hex by treating the number as an 

exponential. More specifically, it rephrases the number so that it becomes a single 

digit value followed by a decimal point and any number of digits afterwards, 

multiplied by “2 raised to a particular power”. [Strictly speaking, it is not a decimal 

point, but a binary point because we will be working in binary.] 

 

Throughout this explanation, we will get closer and closer to the actual 

implementation used by computer processors, however to keep the explanation 

simple, we will advance step by step. 

 

 

The concept of binary non-integers 

 

Although a computer processor has to use a contrived way to deal with binary non-

integers, away from computers, we can portray them in the same way that we 

would portray decimal non-integers – as an integer followed by a binary point 

followed by the binary digits of the fraction part. [A decimal point is used in 

decimal numbers and a binary point is used in binary numbers.] For example, 
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away from a computer, “1011.0001” would be a perfectly valid way to express a 

binary number. However, a computer processor would be unable to use this 

method because the processor works with bytes, words, dwords and qwords, and 

there is no way to place a binary point in the middle of one of these bit groupings. 

 

When thinking about a number such as “1011.0001”, it helps to remember the 

binary number columns. We know about the integer columns that extend to the 

left, becoming ever higher: ones, twos, fours, eights, sixteens and so on. The 

“fraction” columns extend to the right, becoming ever smaller: halves, quarters, 

eighths, sixteenths, thirty-seconds, sixty-fourths and so on. The number columns to 

the right of the binary point are all 1 divided by a power of 2. 

 

The binary number “1011.0001” can be thought of as it appears in the following 

picture: 

 

 
 

When we think of a decimal number with digits after the decimal point, we are 

really saying that its fraction part is the sum of so many units of one column, added 

to so many units of another column, added to so many units of another column, 

and so on. Given that the number columns after the decimal point are tenths, 

hundredths, thousandths, ten thousandths and so on, the decimal number 0.7903, 

for example, really means the sum of 7 lots of tenths added to 9 lots of hundredths, 

added to zero lots of thousandths, added to 3 lots of ten thousandths. We could 

express the sum as so: 

7 * 0.1 

... added to: 

9 * 0.01 

... added to: 

0 * 0.001 

... added to: 

3 * 0.0001 

 

The nature of storing fractions in this way means that if the fraction part of a 

number cannot be created by adding multiples of tenths, hundredths, thousandths, 

ten thousandths and so on, then it cannot be expressed by a finite number of 

decimal places. For example, we cannot express the number created by dividing 1 

by 3 using a finite number of decimal places. This is because 1 divided by 3 cannot 
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be expressed as a sum of tenths, hundredths, thousandths and so on. Expressing 1 

divided by 3 ends up with an infinite number of decimal places: 

0.3333333333333... and so on forever. 

 

Storing binary numbers with fractions is similar to storing decimal numbers with 

fractions. If we have the binary number 0.111111, then it is really the sum of: 

1 * 0.5 

... added to: 

1 * 0.25 

... added to: 

1 * 0.125 

... added to: 

1 * 0.0625 

... added to: 

1 * 0.03125 

... added to: 

1 * 0.015625 

 

If we try to encode any non-integer in binary, then it must be possible to express 

the part after the binary point as the sum of one or more of the following: 

 

0.5 

0.25 

0.125 

0.0625 

0.03125 

0.015625 

0.0078125 

0.00390625 

0.001953125 

0.0009765625 

... and so on. 

 

If the fraction part cannot be expressed as the sum of one or more of those values, 

then it will require an infinite number of digits after the binary point. Even if it can 

be expressed as the sum of one or more of those values, it might need many more 

digits after the binary point than the same number expressed in decimal would 

require after the decimal point. 
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Converting decimal non-integers to binary 

 

For this section, we need to remember how to convert a decimal integer into a 

binary integer, as mentioned earlier in this chapter. The method is as follows: 

 

 We divide the integer by 2. We take the remainder, which will be 0 or 1, and 

put it into the ones column. 

 If the integer part of the division was not zero, we divide it by 2. We take the 

remainder, which again, will be 0 or 1, and we put it into the twos column. 

 If the integer part of the previous division was not zero, we divide it by 2. 

We take the remainder, which again, will be either be 0 or 1, and we put it 

into the fours column. 

 We continue in this way until we reach a time when the integer part of the 

previous division was zero. 

 

[If it seems as if the resulting binary number will be very long, it is easier to 

convert a decimal number into hex, and then convert the hex number into binary.] 

 

The simplest way to convert a decimal non-integer to binary is to keep multiplying 

the decimal number by 2 until it becomes an integer, and then to convert that 

integer into a binary integer. We then divide the binary integer by the amount by 

which we scaled the original number. This division will always be a power of 2. 

 

Dividing a binary number by a power of 2 is easier than it sounds – we just slide 

the binary point one digit to the left for each power of 2. For example, if we needed 

to multiply our decimal non-integer by 2 ten times to create an integer, we would 

need to divide the equivalent binary integer by 2 ten times, which we would do by 

sliding the binary point to the left by ten digits. 

 

As an example, we will convert 34.25 to binary. First, we turn it into an integer, by 

multiplying it by 2 two times. We end up with 137. We then convert 137 into 

binary. It is 10001001. As we multiplied our original number by 2 twice to make it 

into an integer, we need to divide this number by 2 twice. This means we just move 

the binary point two digits to the left. We end up with 100010.01 as our result.  

 

Although it is simple to do, the “multiplying by powers of two to turn a number 

into an integer, then dividing the binary equivalent by powers of two” method 

reveals a particular problem with converting non-integers into binary in general. 

For example, if we had the decimal number 34.55, it would require multiplying by 

two 42 times before it became an integer. It would become 151,952,506,958,643. 

We would have to convert that into a binary number, and then shift the binary 
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point 42 digits to the left. This instantly tells us that the binary number would have 

42 digits after the binary point. 

 

The seemingly simple decimal number 0.1 requires multiplying by 2 fifty times 

before it becomes an integer. This means that the binary number would need to be 

divided by 2 fifty times, and so the result would have 50 digits after the binary 

point. 

 

Another problem is that it might not always be possible to convert a number into 

an integer by multiplying by 2. As a simple example, no matter how many times we 

multiply a third by 2, it will never become an integer. 

 

These problems are not related to this method of converting from decimal to 

binary. Instead, they relate to how it is sometimes difficult or impossible to 

represent a non-integer in binary correctly, in the same way that it is sometimes 

difficult or impossible to represent a non-integer in decimal correctly. 

 

A good example of a number that cannot be portrayed in any (sensible) number 

system is π. To portray the fraction part of π would require an infinite number of 

digits, no matter whether we used decimal, binary, hexadecimal, or any number 

system based on integers. [We could use a number system where the number 

columns were somehow based on multiples of π, but such a numbering system 

would be inaccurate when portraying any numbers that were not related to π.] 

 

These problems are sometimes misinterpreted as a flaw in the way that computers 

store numbers, when in reality, they are just a consequence of using binary. 

Problems of this type would occur no matter which number system we used. 

 

If it turns out that we need to multiply our decimal non-integer by 2 a huge 

number of times to turn it into an integer (or an infinite number of times), then we 

have to make the choice of where to truncate the digits after the binary point. This 

is always an arbitrary choice and depends on what we are doing. The rule for 

rounding up a decimal number is that if the digit to the right of where we are 

truncating it is 5 or more, the digit to the left has 1 added to it. Otherwise, the digit 

is left alone. For example: 

 

7.00015 becomes 7.0002 to four decimal places. 

7.00014 becomes 7.0001 to four decimal places. 
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The rule for binary is that if the digit to the right of where we are truncating is 1, 

we add 1 to the digit to the left. Otherwise, we leave the digit to the left alone. For 

example: 

 

1.00001 becomes 1.0001 to four binary places. 

1.00000 becomes 1.0000 to four binary places. 

1.00011 becomes 1.0010 to four binary places. 

1.00010 becomes 1.0001 to four binary places. 

 

 

Non-integers for computers 

 

We will now move on to how computer processors store and work with binary 

non-integers. The exact details are easiest to understand if we first go through the 

method with decimal non-integers. 

 

When thinking in decimal, any number except zero can be rephrased to be a non-

zero single digit followed by a decimal point and any number of digits afterwards, 

all multiplied by ten raised to a particular power. [We will think about how to 

encode zero later.] For example: 

 

300 can be rephrased to be 3 * 102 

7000 is 7 * 103 

20 is 2 * 101 

330 is 3.3 * 102 

7078 is 7.078 * 103 

22 is 2.2 * 101 

 

1234 is 1.234 * 103 

12.34 is 1.234 * 101 

1.234 is 1.234 * 100 

0.1234 is 1.234 * 10−1 

0.01234 is 1.234 * 10−2 

0.000000001234 is 1.234 * 10−9 

12,340,000 is 1.234 * 107 

 

−77 is −7.7 * 102 

−314,159 is −3.14159 * 105 

−11.0000001 is −1.10000001 * 101 
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From all of these examples, we can see that whether or not a decimal number is an 

integer, once we have rephrased it, there are four identifying characteristics: 

 

 Whether it is positive or negative. 

 The single digit before the decimal point. 

 The digits after the decimal point. 

 The exponent of the number 10. 

 

These four attributes are enough to identify any possible number except zero. 

 

For example, if we have the number −0.1234, it can be rephrased as: 

−1.234 * 10−1. The identifying characteristics are: 

 

 It is negative. We could say that its “sign” is negative. 

 The value of the digit before the decimal point is 1. 

 The digits after the decimal point are 234. 

 The exponent of the number 10 is −1. 

 

The number 0.00000007954 can be rephrased as 7.954 * 10−8. The identifying 

characteristics are: 

 

 It is positive. We could say that its “sign” is positive. 

 The value of the digit before the decimal point is 7. 

 The digits after the decimal point are 954. 

 The exponent of the number 10 is −8. 

 

The number 2,000,007 can be rephrased as 2.000007 * 106. The identifying 

characteristics are: 

 

 It is positive. 

 The value of the digit before the decimal point is 2. 

 The digits after the decimal point are 000007. 

 The exponent of the number ten is 6. 

 

The number −99,999.12 is −9.999912 * 104. The identifying characteristics are: 

 

 It is negative. 

 The value of the digit before the decimal point is 9. 

 The digits after the decimal point are 999912. 

 The exponent of the number ten is 4. 
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For each of these examples, we can write out the identifying characteristics as a 

line of text: 

 

−0.1234:   negative, 1, 234, −1 

0.00000007954:  positive, 7, 954, −8 

2,000,007:  positive, 2, 000007, 6 

−99,999.12:  negative, 9, 999912, 4 

 

Knowing just “negative, 1, 234, −1” is enough to know that we are talking about the 

number −0.1234. There is no other number for which these four characteristics 

apply. 

 

 

The system in binary 

 

We can use the same idea in binary. When thinking in binary, any number except 

zero can be rephrased to be a single non-zero digit followed by a binary point and a 

number of binary digits afterwards, multiplied by 2 raised to a particular power. 

 

[It always helps to know that we can multiply a binary number by 2 by shifting the 

binary point one digit to the right. We can divide a binary number by 2 by shifting 

the binary point one digit to the left.] 

 

To make the idea easier to understand, we will first look at some examples with 

the values as binary numbers, but with the exponentials kept as decimal numbers. 

This makes it easier to see how far the binary point has been moved. 

[Mathematically, it could be confusing to have calculations containing both binary 

and decimal values, but for the sake of the explanation, it makes things easier to 

understand.] 

 

1100 can be rephrased as 1.1 * 23 

10001111 can be rephrased as 1.0001111 * 27 

1011 can be rephrased as 1.011 * 23 

−11001100 can be rephrased as −1.1001100 * 27 

 

1100.001 can be rephrased as 1.100001 * 23 

−0.0111 can be rephrased as −1.11 * 2−2 

−0.00000001 can be rephrased as −1 * 2−8 

11.1111 can be rephrased as 1.11111 * 21 
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We can identify any binary number (except zero) using just 4 attributes: 

 

 Whether it is positive or negative. 

 The value of the digit before the binary point. 

 The binary digits after the binary point. 

 The exponent of the number 2. 

 

[We will see how to encode zero later in this chapter.] 

 

For example, −0.0111 can be rephrased as −1.11 * 2−2. It can be identified with 

these four attributes: 

 

 It is negative. 

 The digit before the binary point is 1. 

 The digits after the binary point are 11. 

 The exponent of the number 2 is −2. 

 

The number 11.1111 can be rephrased to be 1.11111 * 21. It can therefore be 

identified by these four attributes: 

 

 It is positive. 

 The digit before the binary point is 1. 

 The digits after the binary point are 11111. 

 The exponent of the number 2 is 1. 

 

One interesting consequence of doing this in binary is that the single digit before 

the binary point will always be 1. This is because we always slide the number to 

have one non-zero digit before the binary point, and binary only has one type of 

non-zero digit, which is 1. As the digit before the binary point will always be 1, we 

do not need to bother making a note of it. Its existence is implied. Therefore, we 

can encode any binary number using just three attributes: 

 

 Whether it is positive or negative. 

 The binary digits after the binary point. 

 The exponent of the number 2. 
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For example, 1011 is also 1.011 * 23. The three attributes of this are: 

 

 It is positive. 

 The digits after the binary points are 011. 

 The exponent of the number 2 is 3. 

 

 

We will now make this explanation one step more complicated by giving the 

exponentials in binary too. First, this means the base of the exponential changes 

from being “2” in decimal to being “10” in binary. Second, the exponent becomes a 

binary number too. The previous binary examples rephrased to have binary 

exponentials are: 

 

1100 is 1.1 * (10)11 

10001111 is 1.0001111 * (10)111 

1011 is 1.011 * (10)11 

−11001100 is −1.1001100 * (10)111 

1100.001 is 1.100001 * (10)11 

−0.0111 is −1.11 * (10)−10 

−0.00000001 is −1 * (10)−1000 

11.1111 is 1.11111 * (10)1 

 

[Note that because we are writing the binary numbers and exponentials out by 

hand, we can still use negative signs with them. A computer would not be able to 

do this, and would have to use two’s complement. This is a potential source of 

confusion. Away from computers, we have much more leeway in writing binary – 

we can use binary points and negative signs. When a computer deals with non-

integers and negative values, it has to use the contrived alternatives.] 

 

We will look at one of these examples. The binary number 1100.001 can also be 

portrayed as 1.100001 * (10)11, where all the values are in binary. The three 

attributes that distinguish this number from any other number are therefore: 

 

 It is positive. 

 The binary digits after the binary point are 100001. 

 The exponent of the binary number 10 is 11 (in binary), which is 3 in 

decimal. 
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We can summarise all of the examples with their sign (whether they are positive or 

negative), the digits after the binary point, and the exponent: 

 

1100:  positive, 1, 11 

10001111:  positive, 0001111, 111 

1011:  positive, 011, 11 

−11001100: negative, 1001100, 111 

1100.001: positive, 100001, 11 

−0.0111:  negative, 11, −10 

−0.00000001: negative, 0, −1000 

11.1111:  positive, 11111, 1 

 

 

Floating-point numbers 

 

The method of identifying any number apart from zero by the three attributes is 

the basis of how computer processors store and work with non-integers. 

Processors store the three attributes in what is called a “floating-point” number. 

We can think of the process of obtaining the three attributes as sliding the binary 

point so that we have one digit before the binary point. We could also think of the 

binary point as floating left or right. A floating-point number can indicate any 

number at all, whether it is an integer or a non-integer, and whether it is positive 

or negative. 

 

When a value is encoded as a floating-point number, the three attributes are joined 

together so that they fit within particularly sized groups of bits. At the time of 

writing, for Intel and AMD 64-bit processors, the minimum sized group of bits is a 

16-bit word. As this is the shortest size to contain a floating-point number, we will 

look at these numbers first. 

 

Of our three attributes of a number, the first refers to whether the number is 

positive or negative. This is called “the sign”, because it relates to the “plus sign” or 

“minus sign” that would normally be used to prefix a number. The sign is 

represented by the leftmost bit of the 16-bit word. If there is a plus sign, then this 

is set to zero, if there is a minus sign, it is set to one. Thinking of this the other way 

around, if the leftmost bit of the word is zero, the number is positive; if the leftmost 

bit is one, the number is negative. 
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In the following picture, each of the boxes represents a binary digit. The sign is the 

leftmost bit (which is bit 15): 

 

 
 

The second attribute refers to the digits after the binary point. It is called the 

“significand” on account of it being considered the “significant” part of the number 

in this system. In a floating-point number contained within a 16-bit word, this is 

placed in the rightmost part from bit 9 to bit 0 [Remember that we number the bits 

from right to left, and count from zero upwards]. This means that it will be ten bits 

long. To fit the significand into the space available, it might have zeroes placed 

after it, or it might be truncated or rounded up. 

 

 
 

The third attribute refers to the exponent of the exponential in binary. In a 

floating-point number contained within a 16-bit word, this is placed in the middle, 

from bit 14 to bit 10. This means that it will be 5 bits long. In practice, the actual 

exponent is adjusted before it is stored, as we will see shortly. 
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The full layout of a floating-point number contains the following, in this order: 

 the sign 

 the exponent 

 the significand (in other words, the value after the binary point). 

 

 
 

 

The exponent 

 

Among the possible problems we can see with this system so far is that the 

exponent might need to be negative. Therefore, we have to decide how to encode 

the exponent as a negative binary number. One way would be to use two’s 

complement. In practice, however, a fixed value is added to the exponent so that it 

always becomes positive. [That value is subtracted when the floating-point 

number is decoded.] The value added to the exponent varies depending on how 

many bits we are using to store the floating-point number. For a 16-bit word, 

where the exponent is contained within 5 bits, this number will be 15 (in decimal), 

which is 01111 in binary. [Note that I am writing it as 01111 instead of 1111 so 

that it takes up 5 bits, and so removes any confusion as to what happens if we end 

up with just 1111, which is what would happen if the exponent were zero.] 

 

For 16-bit words, whatever the exponent, it will have 15 added to it to make it into 

a positive number between, and including, 00001 and 11110 in binary [which are 

0x01 and 0x1e in hex, or 1 and 30 in decimal.] It is important that the exponent 

ends up as a number between 00001 and 11110 and not between 00000 and 

11111. This is because exponents that are all zeroes or all ones have special 

meanings, as we shall see later. This restriction means that the original exponent 

before the addition can only be between −14 and +15. Therefore, we can only 

encode numbers that have an exponential between 2−14 and 215. In binary, we 

would say that they can only be between (10)−1110 and (10)1111. 

 

The value that is always added to the exponent is called the “bias”. We can say that 

the “exponent is biased”, where the word “bias” in this sense ultimately means a 

constant distortion in one direction. 
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Here are some examples of storing the exponent as a “biased” value – in other 

words, they are examples of storing the exponent with the addition of the fixed 

value of 15. When using 16-bit words to encode floating-point numbers, there are 

5 available bits for the biased exponent. 

 

Original number Exponent Exponent after the addition 

and exponential (in binary) of 01111 (in binary) 

(in binary)    [The biased exponent] 

 

−1.1010101 * (10)1 1  10000 

1.11101 * (10)101 101  10100  

1.001 * (10)1000  1000  10111 

1.11 * (10)−1000  −1000  00111 

1.1 * (10)−1110  −1110  00001 

1.1 * (10)1111  1111  11110 

 

 

The full layout 

 

For a floating-point 16-bit word, the first bit holds the sign, the next 5 bits hold the 

exponent, and the next 10 bits hold the significand. We can portray this with a 

template that indicates the 16 bits with letters standing in for the bits: 

 

sEEEEEnnnnnnnnnn 

 

This is a template that we can use to fill in the bits. The “s” (for “sign”) will be 

replaced with the sign bit. The five letters “EEEEE” (for “Exponent”) will be 

replaced by the biased exponent. The ten letters “nnnnnnnnnn” (for “significand”) 

will be replaced by the significand. The choice of letters is arbitrary, but these are 

easy to distinguish from each other. The template is just to make this explanation 

easier to understand, and normally such a thing would not be used.  

 

 

Using the template 

 

We will look at a complete example. We start with our empty 16-bit word 

template: 

sEEEEEnnnnnnnnnn 
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We will look at the first example in the previous table: −1.1010101 * (10)1. The 

sign is negative, so we set the leftmost bit to 1: 

1EEEEEnnnnnnnnnn 

 

The exponent of our number is 1. Therefore, we add it to 01111 (in binary), and we 

end up with the binary number 10000. This then goes into the exponent section 

[“EEEEE”] of our 16-bit word, which is from bit 14 to bit 9. Our word so far will be: 

110000nnnnnnnnnn 

 

The significand (containing the digits after the binary point) is: 1010101. There are 

only 7 digits, but the section for the significand for a 16-bit word is ten digits long. 

Therefore, we extend our binary digits to ten digits by putting zeroes at the end, as 

so: 1010101000. These extra digits do not affect the number that we are encoding 

in any way. These digits are then placed into the remaining bits as so: 

1100001010101000 

 

[If there had been more than ten digits after the binary point, we would have had 

to round up or truncate the digits.] 

 

We now have our finished number: 

1100001010101000 

... which, given spaces to make it easier to read, is: 

1100  0010  1010  1000 

... and this is: 

0xc2a8 

... in hexadecimal. 

 

Our final 16-bit floating-point number is 0xc2a8. As with two’s complement 

numbers, this is only a floating-point number if we treat it as such. There is no way 

of knowing that this 16-bit word is a floating-point number by looking at it. 

Floating-point numbers require context to be interpreted correctly. With no 

context, we might treat this as a normal unsigned integer word, in which case, it 

would be 49,832 in decimal. If we mistakenly thought it was a signed two’s 

complement integer, it would have the value −0x3d58, which is −15,704 in 

decimal. From the point of view of computers, 0xc2a8 only means −1.1010101 * 

(10)1 if the computer processor is told that 0xc2a8 is a floating-point number 

when it is supplied with the number. 
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16-bit example 1 

 

We will now look at several examples. 

 

We will say that we want to convert the binary number: 

1100.0011 

... into a 16-bit floating-point number. First, we arrange it to be a single digit 

preceding the binary point multiplied by an exponent of 2. If we give the 

exponential entirely in binary, we will have: 

1.1000011 * (10)11 

 

We split this into the three parts that make up a floating-point number: 

 The sign is positive. 

 The significand (the digits after the binary point) is 1000011. 

 The exponent is 11 in binary (which is 3 in decimal). 

 

We will start with our 16-bit template: 

sEEEEEnnnnnnnnnn 

 

As the sign is positive, the leftmost bit is set to zero: 

0EEEEEnnnnnnnnnn 

 

Our exponent is 11, but we need to turn this into a biased exponent by adding 

01111. This gives us 10010. We can put this into the exponent section: 

010010nnnnnnnnnn 

 

Our significand is 1000011. This is 7 digits long, but we have space for 10 digits. 

Therefore, we extend it to ten digits by putting zeroes at the end. We end up with 

this: 1000011000. We can then place this into the significand section: 

0100101000011000 

 

We now have our finished binary word. We will convert it into hexadecimal – first, 

we split it into 4-bit groups to make it easier to read: 

0100  1010  0001  1000 

... then we convert each 4-bit group into the relevant hex digit: 

4 a 1 8 

... and our final hex word is: 

0x4a18 
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16-bit example 2 

 

Next, we will convert −1111000011 to a floating-point number. Rephrased to have 

a single digit integer part and to be multiplied by an exponential, we have: 

−1.111000011 * (10)1001 

 

 The sign is negative 

 The significand is 111000011. This is 9 digits long, but we need it to be 10 

digits long, so we put a zero at the end: 1110000110. 

 The exponent is 1001. Therefore, the biased exponent will be: 

1001 + 01111 = 11000. 

 

We will start with our 16-bit template: 

sEEEEEnnnnnnnnnn 

 

As the sign is negative, we set the leftmost bit to 1: 

1EEEEEnnnnnnnnnn 

 

We then fill in the exponent part with our biased exponent 11000: 

111000nnnnnnnnnn 

 

We then fill in the significand: 

1110001110000110 

 

This is our final floating-point number, but we will convert it to hex. First, we split 

it into 4-bit sections: 

1110  0011  1000  0110 

... then we convert each 4-bit section into one hex digit: 

e 3 8 6 

... which is: 

0xe386 

 

 

16-bit example 3 

 

Now we will convert the decimal number 123.25 into a 16-bit binary or hex 

floating-point number. First, we have to convert the decimal number into a binary 

number with a binary point. To do this, we keep multiplying the decimal number 

by 2 until it becomes an integer: 

123.25 * 2 = 246.5 

246.5 * 2 = 493 
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Therefore, we have to convert 493 into binary. As this looks as if it will produce a 

long binary number, we will convert it into hex first, and then convert the result 

into binary. Doing this is quicker and simpler than converting directly to binary. 

First, we divide the number by 16. This is 30.8125, which is 30 and a remainder of 

13. We convert 13 to hex – it is 0xd – and put it into the 1s column. We then divide 

30 by 16, and we get 1.875, which is 1 and a remainder of 14. We convert 14 to hex 

– it is 0xe – and put it in the 16s column. We then divide 1 by 16, and get 0 and a 

remainder of 1. We put the 1 into the 256s column, and we have finished the 

conversion into hex. The result is: 

0x1ed 

... which is: 

0001 1110 1101 in binary (with spaces to make it easier to read) 

... or: 

000111101101 (without the spaces) 

... or: 

111101101 (without the preceding zeroes). 

 

As we multiplied our original number (123.25) by two twice to turn it into an 

integer, we need to divide our binary number by two twice. We do this by moving 

the decimal point two digits to the left to produce: 

1111011.01 

 

We now have our binary number ready for conversion to a floating-point number. 

We alter it so the integer part is only one digit, and it is multiplied by an 

exponential with 2 as the base. Entirely in binary, this is: 

1.11101101 * (10)110 

[where the binary number 110 is equal to the decimal number 6.] 

 

The three attributes of this number are: 

 The sign is positive. 

 The significand is 11101101 

 The exponent is 110 

 

We take our 16-bit template: 

sEEEEEnnnnnnnnnn 

 

The sign bit will be 0 because the number is positive: 

0EEEEEnnnnnnnnnn 

 

The exponent needs biasing, so we add 01111 to it: 

01111 + 110 = 10101 
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We then put that into our template: 

010101nnnnnnnnnn 

 

The significand is 11101101, which is 8 bits long. As it needs to be ten digits long, 

we put two zeroes on to the end to produce 1110110100. We then put this into our 

template, and we have the finished floating-point number: 

0101011110110100 

 

We will split this into 4-bit sections to make it easier to read: 

0101  0111  1011  0100 

... and then we convert each 4-bit section to hex: 

5 7 b 4 

... and our final floating-point number as a hex word is: 

0x57b4 

 

 

16-bit example 4 

 

We will convert the binary number −1.1 into a floating-point number. Portraying 

this as a single digit integer, followed by a fraction and an exponential, it becomes: 

−1.1 * (10)0 

 

 The sign is negative 

 The significand is 1, which we will extend to 10 digits by putting nine zeroes 

after it: 1000000000 

 The exponent is zero, to which we will add 01111 to become 01111 

 

We take our 16-bit template: 

sEEEEEnnnnnnnnnn 

 

The sign is negative, so the leftmost bit is set to 1: 

1EEEEEnnnnnnnnnn 

 

We put the biased exponent in: 

101111nnnnnnnnnn 

 

We put the significand in, and we have our finished floating-point number in 

binary: 

1011111000000000 
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To convert this into hex, we split the number into 4-bit sections: 

1011  1110  0000  0000 

... then we convert each 4-bit section to a hex digit: 

b e 0 0 

... and our floating-point number in hex is: 

0xbe00 

 

 

16-bit example 5 

 

Now we will convert 1001.111100001010101 into a floating-point number. As a 

value multiplied by an exponential, this is: 

1.001111100001010101 * (10)11 

... where the binary exponent 11 is in 3 in decimal. 

 

We start with our template: 

sEEEEEnnnnnnnnnn 

 

 The sign is positive, so the sign bit will be zero: 

0EEEEEnnnnnnnnnn 

 

 The exponent is 11 in binary. We add this to 01111, and we get 10100, 

which we put into the template: 

010100nnnnnnnnnn 

 

 The significand is 001111100001010101. The maximum number of digits 

we can have for the significand is ten. Our significand is eighteen digits long. 

Therefore, we have to round it to ten digits, which means that we will lose 

some accuracy. This is an unavoidable consequence of floating-point 

numbers, but is more likely to happen when we are using 16-bit floating-

point numbers as we are doing here. A 32-bit, 64-bit, or 80-bit floating-

point number can contain more digits in the significand. Our significand 

rounded up to ten digits is 0011111000. We put this into the template: 

0101000011111000 

 

Our final floating-point number in binary is: 

0101000011111000 
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To convert this into hex, we split it into 4-bit sections: 

0101  0000  1111  1000 

... and convert each one to a single hex digit: 

5 0 f 8 

... so our final floating-point number in hex is: 

0x50f8 

 

 

16-bit example 6 

 

We will now encode the following binary number as a floating-point number 

[shown with spaces to make it easier to read]: 

0.0000 0000 0000 01 

 

This has 14 decimal places. As a value multiplied by an exponential, it becomes: 

1 * (10)−1110 

 

As significands always show the digits to the right of the number 1, we will write it 

with some zeroes after the binary point to make it clearer and easier to work with: 

1.0000 * (10)−1110 

 

 The sign is positive, so the sign bit will be zero. 

 

 The significand is 0000 (although it would be equally valid to say that it is 0 

or 00 or 000, or 000000, or any number of zeroes). We will extend it to ten 

digits as 0000000000. 

 

 The exponent is −1110, to which we must add 01111. The addition is 

easiest if we think of it as 01111 – 1110 = 1. [If we were confused by binary 

maths, we could convert the numbers to decimal, then add them, then 

convert the result back to binary. We would be adding −14 and +15, which 

results in +1 in decimal, which is +1 in binary.] As the biased exponent 

needs to be 5 digits long, we will write this as 00001. 

 

Out template is: 

sEEEEEnnnnnnnnnn 

 

We fill in the sign: 

0EEEEEnnnnnnnnnn 
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We fill in the biased exponent: 

000001nnnnnnnnnn 

 

Then we fill in the significand, which is all zeroes, and our completed floating-point 

number is: 

0000010000000000 

 

We split this into 4-bit sections: 

0000  0100  0000  0000 

... and convert each one to a hex digit: 

0 4 0 0 

... and our floating-point number as a hex word is: 

0x0400 

 

 

Capacity 

 

Example 5 showed how there is a limit to the number of digits after the binary 

point that we can store – the limit is ten digits. However, in example 6, we 

managed to store a number with 14 digits after the binary point. The difference is 

that in example 6, all except the last digit was zero. 

 

It is difficult to say exactly how large or small a number we can store in a floating-

point word. This is because the number of digits we can store depends on the 

nature of the bits in the number we have. 

 

It is possible to store a 16 digit binary integer – we would actually be storing only 

15 digits because the first 1 is implied. However, we would only be able to fit in the 

first ten digits after the first 1. The digits after the first 1 are rounded up to ten 

digits. If the digits after the first ten digits were already zeroes, this will not make 

any difference – we will be storing the number we have completely accurately. 

However, if the digits were not zeroes, we would be storing an approximation. This 

approximation can still be useful as the size of the stored number will be very 

similar to the number we started with – only the lower digits will be zeroed out. 

The idea is analogous to having, say, the decimal number 1,300,021 but only being 

able to store it as 1,300,000. 
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As an example, if we tried to store this 16 digit binary integer: 

1111 0000 1111 1111 

... as a 16-bit floating-point word, we would only be able to store the first ten digits 

after the first 1. It would end up being converted to:  

1111 0000 1110 0000 

This is because it would be rounded up to ten significant digits after the first 1. The 

first number is 61,695 in decimal. The second number is 61,664 in decimal. We still 

have a similarly high number, but it is not exactly the same. 

 

We could store a 15 digit binary number if it is entirely a fraction less than 1. We 

would actually only need to store 14 digits because the first 1 is implied. However, 

we would only be able to store the first ten digits after the first 1 because the digits 

after the first 1 would be rounded up to ten decimal places. Again, depending on 

the number we are storing, this might not matter. 

 

If we wanted to have the binary number: 

0.1111 0000 1111 1111 

... as a 16-bit floating-point word, it would end up being changed to: 

0.1111 0000 1110 0000 

... because it would be rounded up after the first ten decimal places after the first 1. 

 

 

16-bit example 7 

 

We will now decode a 16-bit floating-point number to find out the number it 

represents. We will decode: 0x8e23. In binary this is: 

1000 1110 0010 0011 (with spaces to make it easier to read) 

... or: 

1000111000100011 (without spaces) 

  

By putting the number against our template, we can see which bits make up the 

sign, exponent and significand: 

 
sEEEEEnnnnnnnnnn 

1000111000100011 

 

... or to make it clearer: 

 
s EEEEE nnnnnnnnnn 

1 00011 1000100011 
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 The sign bit is 1, so the number is negative. 

 

 The exponent bits are 00011. [As this is less than 01111, it means that the 

actual exponent must have been negative.] We have to subtract 01111 to 

find the actual exponent. We calculate: 00011 – 01111 = −1100. If you are 

still getting used to binary, this can be easier to calculate in decimal: 

3 – 15 = −12. 

 

 The significand is 1000100011. This means that the original number that 

was multiplied by the exponential was 1.1000100011 [We prefix the 

significand with the implied “1”]. 

 

Our decoded binary number is: 

1.1000100011 * (10)−1100 

 

We need to shift the binary point of 1.1000100011 by 1100 (in binary) digits to the 

left. This is 12 (in decimal) digits to the left. Each shift of the binary point to the left 

results in another zero being placed at the start of the number. We end up with the 

binary number: 

0.0000000000011000100011 

 

 

Zero and infinity 

 

So far, we have not been able to store the number zero. This is because zero cannot 

be expressed as a binary number multiplied by a power of 2 if that binary number 

has 1 as the integer part. For this reason, the floating-point number system sets 

aside a special combination of significand and exponent that represents a zero. The 

exponent and significand are both set to zero, so the exponent becomes 00000, and 

the significand becomes 0000000000. The sign bit can be either 1 or 0, which 

means we can have positive zero or negative zero. These ultimately mean the same 

thing. 

 

Positive zero in a 16-bit word looks like this in binary (with spaces added to make 

it easier to read): 

0000 0000 0000 0000 

... which is: 

0x0000 in hex. 
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Negative zero is this in binary: 

1000 0000 0000 0000 

... which is: 

0x8000 in hex. 

 

We can also represent infinity, in which case, the exponent is set to all ones: 11111, 

and the significand is set to zeroes: 0000000000. The sign bit can be either 1 or 0, 

which means we can represent positive infinity and negative infinity. 

 

Positive infinity in binary is: 

0111 1100 0000 0000 

... which is: 

0x7c00 in hex. 

 

Negative infinity in binary is: 

1111 1100 0000 0000 

... which is: 

0xfc00 in hex. 

 

 

32-bit floating-point numbers 

 

Although a 16-bit floating-point word is good for explanations, on Intel and AMD 

64-bit processors, a floating-point number as a 16-bit word is only useable in 

certain situations, and then the processor immediately converts it into a 32-bit 

floating-point number. Intel and AMD processors mainly use larger sizes, which 

have lengths of 32 bits, 64 bits and 80 bits. 

 

A 32-bit floating-point number fits into a dword. Its formal name is “a single-

precision” floating-point number. [A 16-bit floating-point number is called “a half-

precision” floating-point number.] In programming languages such as C, a 32-bit 

floating-point number is called a “float”. Away from programming, the term “32-bit 

float” is more descriptive. 

 

A 32-bit floating-point number has a similar layout to a 16-bit one, but it has more 

room for the exponent and the significand. Specifically, there are 8 bits for the 

exponent, and 23 bits for the significand. The exponent has to be “biased” by 

adding it to 127 (in decimal), which is 01111111 in binary or 0x7f in hex. The bits 

available for the exponent allow it to store the exponents of exponentials from 

2−126 to 2127. This means that a dword can store 126 binary places or 127 integer 

digits, but the digits will be rounded up to the first 23. 
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To make the dword easier to visualise, a 32-bit template would look like this: 

 

sEEEEEEEEnnnnnnnnnnnnnnnnnnnnnnn 

 

... or shown with spaces to make it clearer: 

 

s EEEEEEEE nnnnnnnnnnnnnnnnnnnnnnn 

 

Zero is represented by setting the exponent and significand to all zeroes. 

Depending on the sign bit, we can have positive zero or negative zero. Positive zero 

is this in binary (with spaces to make it easier to read): 

0000 0000 0000 0000 0000 0000 0000 0000 

In hex, it is: 

0x00000000 

 

Negative zero is: 

1000 0000 0000 0000 0000 0000 0000 0000 

... which, in hex, is: 

0x80000000 

 

Infinity is represented by setting the exponent to all ones, and the significand to all 

zeroes. We can represent positive or negative infinity. Positive infinity in binary is: 

0111 1111 1000 0000 0000 0000 0000 0000 

In hex, it is: 

0x7f800000 

 

Negative infinity in binary is: 

1111 1111 1000 0000 0000 0000 0000 0000 

In hex, it is: 

0xff800000 

 

As an example of a 32-bit floating-point number, we will store the binary number: 

−1101.000001111 

 

As before, this involves turning it into a number with a single digit integer 

multiplied by an exponent of 2. It becomes: 

−1.101000001111 * (10)11 

 

The sign is negative, so we will set the sign bit in our template to 1: 

1EEEEEEEEnnnnnnnnnnnnnnnnnnnnnnn 
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The exponent is 11. We have to turn it into a biased exponent, so we add 01111111 

to it, which produces 10000010. We put this into the exponent section: 

110000010nnnnnnnnnnnnnnnnnnnnnnn 

 

The significand is 101000001111. This is twelve digits long, but there are 23 

available bits. Therefore, we put eleven zero digits after it to make it the correct 

length. It becomes 10100000111100000000000. We put it into the significand 

section, and we have our finished 32-bit floating-point number in binary: 

11000001010100000111100000000000 

 

This is a good example of a number that is much easier to read in hex. We split it 

into 4-bit sections: 

1100  0001  0101  0000  0111  1000  0000  0000 

... and we convert each 4-bit section to its relevant hex digit: 

c 1 5 0 7 8 0 0 

... and our number as a hex dword is: 

0xc1507800 

 

 

64-bit floating-point numbers 

 

64-bit floating-point numbers are called “double-precision” floating-point 

numbers. They are also called “double floats” or even just “doubles”. A more 

descriptive short name for them is “64-bit floats”. 

 

A 64-bit floating-point number has eleven digits for the exponent and 52 digits for 

the significand. The exponent of a number that is about to be stored needs first to 

be added to 1023 in decimal, which is 0x3ff in hex and 01111111111 in binary 

(this is eleven digits long). The bits available for the exponent allow it to store the 

exponents of exponentials from 2−1022 to 21023. 

 

Although it does not really make the qword easier to visualise, a 64-bit template 

looks like this: 
 

sEEEEEEEEEEEnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 

 

... or like this with the parts drawn on different lines: 

 

s 

EEEEEEEEEEE 

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 



A Book About Waves: Chapter 40 Binary and Hexadecimal © Tim Warriner 2024 [2024-02-25] 87 

 
As with 16-bit and 32-bit floating-point numbers, zero is represented by setting 

the exponent and significand to zeroes. Positive zero looks like this in hexadecimal: 

0x0000000000000000 

... while negative zero looks like this in hexadecimal: 

0x8000000000000000 

 

Infinity is represented by setting the exponent to all ones and the significand to all 

zeroes. Positive infinity looks like this in hexadecimal: 

0x7ff0000000000000 

... while negative infinity looks like this in hexadecimal: 

0xfff0000000000000 

 

As an example of a 64-bit floating-point number, we will store the following binary 

number, which I have put into 4-bit sections to make it easier to read: 

0.0000 0000 0000 1100 1111 0001 0000 1111 

 

As a value multiplied by an exponential this is: 

1.1001 1110 0010 0001 111 * (10)1101 

... where the binary exponent 1101 is 13 in decimal. 

 

To make things simpler, we will use our 64-bit template: 
sEEEEEEEEEEEnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 

 

The number is positive, so the leftmost bit is set to zero: 
0EEEEEEEEEEEnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 

 

Our exponent is 1101. For 64-bit numbers, we have to add the exponent to 

01111111111 before we can store it. We calculate: 

01111111111 + 1101 = 10000001100 

 

We put this into our 64-bit template: 

 
010000001100nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 

 

Our significand is 100 1111 0001 0000 1111. This is 19 digits, but we have space 

for 52 digits. Therefore, we put extra zeroes after it. We can then put it into our 64-

bit number, and we have the finished number, which looks like this in binary: 

 
0100000011001001111000100001111000000000000000000000000000000000 
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To make this more palatable, we will convert it into hexadecimal. We start by 

splitting it into 4-bit sections: 

 
0100 0000 1100 1001 1110 0010 0001 1110 0000 0000 0000 0000 0000 

0000 0000 0000 

 

Then we convert each 4-bit section to the relevant hex digit: 

4 0 c 9 e 2 1 e 0 0 0 0 0 0 0 0 

... and we end up with our 64-bit floating-point number in hex as: 

0x40c9e21e00000000 

 

 

80-bit floating-point numbers 

 

The next type of floating-point number uses 80 bits. Unlike 16-bit, 32-bit and 64-

bit floating-point numbers, 80-bit floating-point numbers do not fit into a standard 

grouping of bits. We cannot store an 80-bit number in a byte (8 bits), word (16 

bits), dword (32 bits), or qword (64 bits). However, we can still store them in 

computer memory or in a file. 

 

The formal name for an 80-bit floating-point number is a “double-extended-

precision” floating-point number. They are also called “long doubles”, but a more 

descriptive name for them would be “80-bit floats”.  

 

80-bit floating-point numbers are slightly different from 64-bit, 32-bit and 16-bit 

floating-point numbers. On Intel and AMD 32-bit and 64-bit processors, they can 

only be used in what is called the floating-point unit. To explain this most simply, 

the floating-point unit is the part of the processor that is dedicated solely to 

dealing with floating-point numbers one instruction at a time. A modern Intel or 

AMD processor has one floating-point unit, but it also has other parts that can use 

commands to operate on floating-point numbers in parallel. [Adding in parallel, for 

example, means that the values in two lists of numbers can be added together 

more quickly than if they were added one value at a time.] The set of parallel 

commands are called the “Single Instruction Multiple Data” instructions, or “SIMD” 

instructions. The commands in this group that operate on floating-point numbers 

in parallel are called the “Streaming SIMD extensions” (or “SSE” for short) because 

the original SIMD commands only worked on integers. The SSE instructions can 

work on integers or floating-point numbers, but when working on floating-point 

numbers, they can only work on 32-bit and 64-bit floating-point numbers. As new 

processor designs were released, the set of SSE instruction set was added to, and 

the new additions are called “SSE2”, “SSE3” and so on. 16-bit half-precision 
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floating-point numbers can only be used with SSE instructions, and then they are 

immediately converted to 32-bit single-precision floating-point numbers. 

 

Although 80-bit floating-point numbers can store bigger and more accurate 

numbers, they are less versatile than 32-bit or 64-bit floating-point numbers. An 

Intel or AMD computer processor can only work with 80-bit floats one at a time in 

the floating-point unit. It is quicker not to use 80-bit floats if we need to perform 

the same calculations on several floating-point numbers at the same time. A 

computer game, for example, would be faster using 32-bit or 64-bit floats with SSE 

instructions than using 80-bit floats in the floating-point unit. On the other hand, a 

maths program would be more accurate when using 80-bit floats. Which is the best 

size depends on what it is we want to do, and how we want to do it. When 

programming in higher-level languages, if asked to use 80-bit floats, some 

compilers will ignore the request and use 64-bit floats instead. [A compiler is the 

program that takes the text of a program’s source code and converts it into the 

finished executable program.] 

 

When a 32-bit or 64-bit float is loaded into an Intel or AMD processor’s floating-

point unit, it becomes converted into an 80-bit float. When the floating-point unit 

stores the 80-bit float to memory, it can store it as an 80-bit float, a 64-bit float or a 

32-bit float, depending on what it is asked to do. [It can also store it as a rounded 

up signed integer in the form of a two’s complement 16-bit word, 32-bit dword or 

64-bit qword.] 

 

80-bit floating-point numbers have 15 bits for the exponent and 64 bits for the 

significand. What makes them different is that the significand will contain the 

preceding “1” that is implied with the other sizes of float. Therefore, the leftmost 

bit of the significand will generally be set to 1. [It is set to 0 to indicate zero and 

“denormalised” numbers, which I will explain later in this chapter.] Given that the 

leftmost bit is used, there are actually only 63 bits for the significand. 

 

The 15 bits for the exponent mean that the exponent can go from −16,382 to 

+16,383 in decimal. These are −0x3ffe to +0x3fff in hex, or: 

−11 1111 1111 1110 

... to: 

+11 1111 1111 1110 

... in binary (with spaces to make the numbers easier to read). 

 

The exponent needs to be biased by having 16,383 in decimal added to it. This is 

0x3fff in hex or 011 1111 1111 1111 in binary 
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A template for an 80-bit floating-point number is as follows. It consists of 1 bit for 

the sign, 15 bits for the exponent and 63 bits for the significand. The number is so 

long that it is easier to read when split over three lines: 

 
s 

EEEEEEEEEEEEEEE 

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 

 

If we want to portray zero, it would have an exponent of zero, a significand of zero, 

and a sign of one or zero, depending on whether we want it to be positive or 

negative zero. In binary, positive zero is: 

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

0000 0000 0000 0000 0000 0000 

... which is: 

0x00000000000000000000 

... in hex, or with the lower dwords separated by spaces to make it easier to read: 

0x0000 00000000 00000000 

 

In binary, negative zero is: 

1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

0000 0000 0000 0000 0000 0000 

... which is: 

0x80000000000000000000 

... in hex, or with the lower dwords separated by spaces to make it easier to read: 

0x8000 00000000 00000000 

 

With 16-bit, 32-bit and 64-bit floating-point numbers, infinity was represented by 

setting the exponent all to ones and the significand all to zeroes. With 80-bit 

floating-point numbers, the exponent is similarly set to all ones, but the significand 

is set to all zeroes except for the leftmost bit, which is set to 1. Therefore, in binary, 

positive infinity is: 

 

0111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

0000 0000 0000 0000 0000 0000 

 

In hex, this is: 

0x7fff 80000000 00000000 

... with spaces separating the lower dwords to make it easier to read. 
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In binary, negative infinity is: 

 

1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 

0000 0000 0000 0000 0000 0000 

 

In hex, this is: 

0xffff 80000000 00000000 

 

It is worth noting that apart from when encoding zero and certain rare exceptions 

(denormal numbers, which I mention later), the leftmost bit of the significand will 

always be set to 1. This is because the implied 1 that is ignored in 16-bit, 32-bit and 

64-bit floating-point numbers is kept in 80-bit floating-point numbers. 

 

We will convert a binary number to an 80-bit floating-point number to see how it 

works. We will convert the following binary number: 

0.0000 0000 0000 0000 0000 0000 1100 1100 0000 1100 1100 1111 1111 

 

This can be rephrased as: 

1.1001 1000 0001 1001 1001 1111 111 * (10)−11001 

... all in binary, where −11001 is −0x19 in hex and −25 in decimal. 

 

The attributes of this number are: 

 

 The sign is positive. 

 

 The exponent is −11001. We have to add this to 011111111111111 for it to 

become our biased exponent. This is slightly easier to do by working in 

decimal, in which case we add −25 to 16,383, which is 16,358. This is 

0x3fe6 in hex, and 011 1111 1110 0110 in binary. 

 

 For 16-bit, 32-bit and 64-bit floating-point numbers, we would say that the 

significand is 1001 1000 0001 1001 1001 1111 111. However, for 80-bit 

floating-point numbers, we have to include the normally implied “1” as the 

leftmost bit. Therefore, our significand is actually all of that number 

preceded by 1, which is: 1100 1100 0000 1100 1100 1111 1111. We also 

have to extend the number to 64 digits by putting zeroes at the end. 

 

Our template looks like this: 
s 

EEEEEEEEEEEEEEE 

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 
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We set the sign to 0: 
0 

EEEEEEEEEEEEEEE 

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 

 

We set the exponent to 011111111100110: 
0 

011111111100110 

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 

 

We set the significand to 1100110000001100110011111111 followed by enough 

zeroes to make it 64 digits long. 
0 

011111111100110 

1100110000001100110011111111000000000000000000000000000000000000 

 

We then join up the pieces, and our final binary number (with spaces to make it 

easier to read) is: 

0011 1111 1110 0110 1100 1100 0000 1100 1100 1111 1111 0000 0000 0000 

0000 0000 0000 0000 0000 0000 

... which, in hex, is: 

0x3fe6 cc0ccff0 00000000 

... with spaces separating the lower dwords to make it easier to read. 

 

 

Denormalised numbers 

 

The method of encoding numbers with the floating-point system described in this 

chapter refers to what are called “normalised” or “normal” numbers. This is 

sufficient for nearly all use of floating-point numbers. Normalised numbers are so-

called mainly to distinguish them from “denormalised” or “denormal” numbers. 

We can think of “normalised” numbers as just being numbers as encoded with the 

floating-point system already described where: 

 With 16-bit, 32-bit, and 64-bit floats, there is an implied initial 1 digit. 

 With 80-bit floats, the 1 digit is included. 

 

“Denormalised” or “denormal” numbers are ones that are so small that they are 

likely to be treated as zero because of the way that the floating-point system 

encodes numbers – the exponent cannot go high enough to accommodate them. 

This can be a problem if a calculation produces a very small number and the 

program needs to know that the result is not exactly zero. To avoid treating tiny 

numbers as zero, the way they are stored is temporarily altered to accommodate 
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them. This involves removing the idea of an implied 1 (or an included 1 for 80-bit 

floats) and having an implied zero instead (which is an included zero for 80-bit 

floats). On Intel processors, the switch to a denormalised number is flagged with a 

warning to tell a program that it has happened. As we have seen, 80-bit floating-

point normal numbers have the usually implied 1 kept as the leftmost bit of the 

significand. If a number becomes too small for the exponential to encode it, the 

number becomes denormal and the leftmost bit of an 80-bit number becomes set 

to zero. In 16-bit, 32-bit and 64-bit floats, the zero becomes implied instead of the 

usual 1 being implied. 

 

You do not need to understand denormalised numbers for the purposes of 

understanding anything in this book, or even for most programming. I only 

mention them here because other explanations of floating-point numbers might 

discuss them. 

 

 

More on floating-point numbers 

 

Here are some more facts about floating-point numbers. 

 

There is an internationally agreed system for the encoding of binary numbers with 

the floating-point method. It is called “IEEE 754”. Intel and AMD processors follow 

this system. 

 

Values stored as floating-point numbers are limited to those that have significant 

digits that can fit into the significand, and also those that are of a size that can be 

represented by the exponent. For most purposes, the floating-point number 

system is perfectly suitable. As long as a number has the basic layout of: 

11100000000 

... or: 

0.0000000111 

... it can be encoded without any trouble. Problems can arise if we have a number 

that is both large and requires accuracy, such as this one: 

1110000000000.0000000000011 

[Using signal processing language, we could say that we are limited by the dynamic 

range of the floating-point system.] 

 

Floating-point numbers have an unavoidable limit to their accuracy. As more 

calculations are performed with a number, this can become a problem and 

rounding errors will start to produce increasingly inaccurate results. A 

consequence of this is that a calculation performed with an 80-bit float might 
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produce slightly different results from the same calculation performed with a 64-

bit or 32-bit float. An 80-bit float will be slightly more accurate. For 80-bit, 64-bit 

and 32-bit floats, any accumulated inaccuracies will be different, depending on 

which we are using. 

 

The significand is sometimes called the “mantissa”. “Mantissa” is a Latin word that 

means a small amount of something used to top up a quantity to achieve a certain 

weight. For example, if we added a small amount of flour to a bag of flour to make 

it up to a 1 kilogramme, then, in the Latin sense, that small amount of flour would 

be a mantissa. The word has a related sense as “a worthless addition”. It is used in 

maths with the idea that the part after the binary (or decimal) point is not as 

important as the part before. Etymologically, the term “significand” really means 

the opposite of “mantissa” because it implies significance. The significand in a 

floating-point number is the most significant part. Some people prefer the word 

“significand”; some people prefer the word “mantissa”. In Intel’s “Intel 64 and 

IA-32 Architectures Software Developer’s Manual” (which is the definitive 

description of Intel’s processors), Intel uses the term “significand”. 

 

As we have seen, floating-point numbers can store integers as well as non-integers. 

However, if we were only dealing in integers, it would be much easier not to use 

floating-point numbers and to use standard words, dwords and qwords instead. 

 

 

Storing in memory 

 

Floating-point numbers are stored in memory in the same way as bytes, words, 

dwords and qwords. In other words, they can be placed in the “backwards” little-

endian way, or the more straightforward big-endian way. It is easiest to store them 

in files in the same way as they are stored in a computer’s memory. 

 

A 16-bit half-precision floating-point number is a word, so it is stored as two bytes. 

If we store the 16-bit float 0x4a18 in the little-endian way, it would look like this in 

memory when viewed in a debugger or in a file as viewed in a hex editor: [I have 

arbitrarily added zeroes afterwards to fill a full line.] 

 
0000: 18 4a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .J.............. 

 

In the big-endian way, it would look like this: 

 
0000: 4a 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 J............... 
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A 32-bit single-precision floating-point number is a dword, so it is stored as four 

bytes. If we stored the 32-bit float 0xc1507800 in the little-endian way, it would 

look like this in memory or a file: 

 
0000: 00 78 50 c1 00 00 00 00 00 00 00 00 00 00 00 00 .xP............. 

 

In the big-endian way, it would look like this: 

 
0000: c1 50 78 00 00 00 00 00 00 00 00 00 00 00 00 00 .Px............. 

 

A 64-bit double-precision floating-point number is a qword, so is stored as eight 

bytes. If we stored the 64-bit float 0x40c9e21e00000000 in the little-endian way, it 

would look like this in memory or a file: 

 
0000: 00 00 00 00 1e e2 c9 40 00 00 00 00 00 00 00 00 .......@........ 

 

If we stored it in the big-endian way, it would look like this: 

 
0000: 40 c9 e2 1e 00 00 00 00 00 00 00 00 00 00 00 00 @............... 

 

An 80-bit double-extended-precision floating-point number is 80 bits long, so it 

takes up ten bytes. If we stored the 80-bit float 0x3fe6cc0ccff000000000 in the 

little-endian way, it would look like this in memory or a file: 

 
0000: 00 00 00 00 f0 cf 0c cc e6 3f 00 00 00 00 00 00 .........?...... 

 

In the big-endian way, it would look like this: 

 
0000: 3f e6 cc 0c cf f0 00 00 00 00 00 00 00 00 00 00 ?............... 

 

Intel 64-bit processors (among other 64-bit processors) work fastest when reading 

numbers from memory if the numbers are aligned to an offset that is on a 64-bit 

(8-byte) boundary. In other words, they can read a number more quickly if the 

offset of the number in memory ends in 0 or 8. For example, it is quicker for the 

processor to read the 64-bit qword 0xffffffffffffffff in this bit of memory, where it 

starts on a 64-bit offset: 

 
000000014000D000: ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 

 

... than it is to read it from this bit of memory, where it starts 1 byte after a 64-bit 

offset: 

 
000000014000D000: 00 ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 
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For this reason, in memory, numbers are frequently stored at 64-bit offsets, and if 

a number does not take up the full 64 bits, the bytes afterwards until the next 64-

bit boundary become unused. They might be set to zero, they might be set to 0xcc, 

or they might be left as whatever they were before. [Setting them to 0xcc can be 

helpful for programmers trying to detect problems when debugging software – if 

the number 0xcc, 0xcc, 0xcccc or similar is read by the program when it should not 

be, then it is a sign that the program is reading from the wrong parts of memory. 

Similarly, if the processor tries to execute the command 0xcc, it will instantly pass 

control of the program to a debugger.] Aligning numbers to 64-bit boundaries 

means that in memory, the consecutive 32-bit unsigned integer dwords 0xffffffff 

and 0x22222222 would appear as so: 

 
000000014000D000: ff ff ff ff 00 00 00 00 22 22 22 22 00 00 00 00 

 

If speed is not of importance, then the numbers might appear normally as so: 

 
000000014000D000: ff ff ff ff 22 22 22 22 00 00 00 00 00 00 00 00 

 

The 64-bit alignment idea means that an 80-bit floating-point number, which takes 

up ten bytes, will often be followed by padding bytes so that the next number 

starts on a 64-bit offset. There will be 6 bytes of padding. Therefore, two 

consecutive 80-bit floating-point numbers might be stored in memory as follows: 

[Shown here with the padding bytes set to 0xcc to make it clearer as to what is a 

number and what is padding.] 

 
000000014000d000: 00 30 1d df 27 58 c5 c5 00 40 cc cc cc cc cc cc 

000000014000d010: 00 40 c7 f7 09 56 71 81 02 c0 cc cc cc cc cc cc 

 

When storing the data into a file, there is less need to have padding, as the file will 

need to be loaded into memory before the processor can read it. Reading the data 

from a file into memory is so many times slower than reading from memory that 

there are no real speed advantages in having padding in a file. Therefore, in a file, 

the above numbers would be much more likely to appear consecutively as so: 

 
0000: 00 30 1d df 27 58 c5 c5 00 40 00 40 c7 f7 09 56 

0010: 71 81 02 c0 00 00 00 00 00 00 00 00 00 00 00 00 

 

Sometimes, it is less effort from a programming point of view just to copy data 

directly from memory into a file, without looking at the data while it is being done. 

In such situations, a file will unnecessarily contain the padding. This is why 

sometimes when you look at a file in a hex editor, the numbers might appear 

differently from how you would expect. 
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Programming terms 
 

In this chapter, we have looked at the different ways of storing binary and hex in a 

way that emphasises the number of bits in each number. Someone from Intel or an 

assembly language programmer would speak of the numbers in this way. 

Generally, in programming languages, the actual details of the numbers being used 

are hidden from the programmer. Therefore, the names that a C programmer, for 

example, would use can be different from those that an assembly language 

programmer would use. The terms used in higher-level programming tend to be 

much more vague in their meaning, and can even refer to different things 

depending on the type of processor on which the program is going to be run. When 

higher-level programmers discuss the types of numbers that are stored in a file, 

they might use higher-level programming terms instead of saying bytes, words, 

dwords, 80-bit floats, and so on. Therefore, it pays to know what they mean. 

 

In this section, we will look at the more common programming terms used in C 

programming. 

 

 

Char 

 

The term “char” is short for “character”. A “char” is 8 bits long and is so-called due 

to how an ASCII character is 8 bits in length. A “char” is specifically a signed byte. 

Therefore, it can store positive and negative integers, but it can only store a 

positive integer up to +127. 

 

A “uchar” is an unsigned byte, or what I would call a normal byte. This means it can 

store positive integers from 0 up to 255. 

 

 

Int 

 

The term “int” is short for “integer”, and specifically means a “signed integer”. This 

is an ambiguous term because it can refer to different lengths of numbers 

depending on the processor for which the program is being written. On a 16-bit 

processor, an “int” will be a 16-bit signed integer. For a 32-bit processor, an “int” 

will usually be a 32-bit signed dword, but not always. Similarly, for a 64-bit 

processor, an “int” will usually be a 64-bit signed qword, but not always. All of this 

means that if someone mentions the term “int”, its meaning is ambiguous without 

further information. Having a slightly ambiguous definition of an unsigned integer 

allows fairly simple code to be used on different types of computers without 
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needing to be rewritten. [It is not good if you want to tailor your code to take 

advantage of a particular type of processor or operating system.] The ambiguity is 

a nuisance when it comes to numbers stored in a file, as saying “this file contains a 

list of numbers as ints” is as useless as saying “this file contains numbers”. It is 

better either to refer to signed or unsigned bytes, words, dwords and qwords, or 

otherwise to specify the bit size of the int. 

 

To have an unsigned integer, there is the term “uint”. 

 

There is also the term “long”, which refers to a signed integer that is bigger than an 

“int”. This can also be ambiguous. 

 

 

Float 

 

A “float” is a 32-bit single-precision floating-point number. Outside of 

programming, it would be more descriptive to refer to floats as “32-bit floats” to 

indicate how many bits they use. 

 

 

Double 

 

A “double” is a 64-bit double-precision floating-point number. Outside of 

programming, it is more descriptive to refer to such numbers as “64-bit floats”, 

“64-bit doubles” or even “64-bit double floats”. 

 

 

Long double 

 

A “long double” is an 80-bit double-extended-precision floating-point number. 

Outside of programming, it is more descriptive to refer to such numbers as “80-bit 

floats”, “80-bit long doubles” or even “80-bit long double floats”. Some modern 

compilers will ignore any requests to use 80-bit long doubles, and replace them 

with 64-bit doubles instead. This means that there will be less accuracy, but the 

program might run faster because it can use a wider range of instructions to deal 

with the numbers. 
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Conclusion 
 

This has been Chapter 40 of my book about waves. The rest of the book is available 

at www.timwarriner.com 

 

It is easiest to understand and remember everything in this chapter if you have a 

need to do so. It is well worth downloading a free hex editor to get more used to 

binary and hexadecimal. 

 

 

 

 

 

 

 

 

 

 
w w w . t i m w a r r i n e r . c o m 
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